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THE DUANE MODEL 

1. INTRODUCTION 

1.1 A model that is used frequently in reliability growth assessment is an empirical model 
first observed by J.T. DUANE (General Electrical Company 1962). It established a 
relationship between failure rate and testing time for programmes where a continuous effort is 
made to improve reliability by the prompt introduction of modification following failure. 

1.2 The original relationship was based on failure data for five varied types of systems.  
These included hydro-mechanical devices, types of aircraft generator and an aircraft jet 
engine.  The model has since been used in a wide variety of applications, including some 
electronic equipment, and as the postulate for other models (e.g. the AMSAA Model see 
Serial 8). 

1.3 Much of the literature on reliability growth contains some reference to the Duane 
model.  The aim of this Chapter is to summarise the main features of the model and to 
consider its application and limitations for reliability growth planning, management and 
analysis. 

1.4 The key relationship in the Duane Model is that on a log-log plot, the graph of 
cumulative failure rate verses the cumulative test time is linear.  This relationship is known as 
the “Duane Postulate”, in which the negative slope of each line is defined as the growth rate 
α.   

2. MAIN FEATURES OF MODEL 

2.1 Duane observed an empirical relationship between cumulative failure rate and 
cumulative operating time given by the expression: 

              ----------------------------------------------------------------------------------(1) αλ −= kTc

where =cλ  cumulative failure rate at time T (i.e. mean between O and T) 

 constant =k

 =T total operating time 

 =α a constant, often misleadingly called the growth rate 

Taking logarithms in equation (1) yields: 

 ( ) kTc logloglog +−= αλ  ----------------------------------------------------------------(2) 

Thus when cλ  is plotted against T on log/log paper, the points will lie on a straight line 
having slope ( )α− . 

The model is equally applicable to MTBF(M) growth, where λ/1=M .  Then: 
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  ----------------------------------------------------------------------------------(3) αKTM c =

where  kK /1=

and  KTM c logloglog +=α  ----------------------------------------------------------------(4) 

2.2 These equations are of exactly the same form as those for failure rate except that the 
power of T is now α= . Generally, the MTBF presentation is preferred because the upward 
slope reflects reliability improvement (i.e. intuitively ‘up’ is ‘good’).  In the remainder of this 
Leaflet, discussion is confined generally to MTBF to simplify the text. 

2.3 Clearly equations (1) to (4) do not hold for T=O because they would give an infinite 
failure rate or zero MTBF.  Also, ‘zero’ does not appear on a log/log plot.  To overcome this 
feature, some arbitrary datum (or start point) must be selected. Assume that: 

=sM   cumulative MTBF at time  sT

=sT   operating time (> 1 hour) at which growth plotting is to begin 

=cM   cumulative MTBF at time T 

=T   total operating time 

=α   the growth slope 
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Figure 1 - Duane Plot Datum 
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or ( ) ssc MTTM loglogloglog +−=α  -------------------------------------------------------(5) 

Alternatively, equation (5) may be expressed using logarithmic rules as: 

 α
α

KT
T
TMM

s
sc =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  ----------------------------------------------------------------(6) 

which is the same as equation (3), but equates to K with α
s

s

T
M

. 

which can be rearranged as follows to estimate the test time required in order for the system 
to meet the target MTBF: 

 
α/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s
s M

McTT                     ----------------------------------------------------------------(7) 

2.4 Normally, when plotting practical data, the points for low T values will be scattered 
and not very meaningful. It is usual, therefore, to start the plot after some nominal time (100 
test hours is often chosen, i.e.Ts = 100) and to use the data during this early period to establish 
Ms.  It should be noted, however, that when measuring Mc all failures from T = O must be 
used and not just those from Ts onward. 

2.5 Assuming growth occurs ( )O〉α , then instantaneous MTBF (Mi) at any time T will be 
greater than the cumulative MTBF (Mc) because improvements have been introduced.  Mi 
represents the MTBF which the equipment would have if reliability growth stopped at time T. 
Mi  can be derived by differentiating equation (6), using the definition that Mc is equal to the 
total time divided by the total number of failures (Mc = T/F) as follows: 

 
( )

K
T

KT
T

M
TF

c

α

α

−

===
1

 ----------------------------------------------------------------(8) 

and    ( ) ( )
cMKTdT

dF αα
α

−
=

−
=

11  

Since dF/dT is the instantaneous failure rate and the instantaneous MTBF is its reciprocal, 
then: 

          ( )
ci MMdT

dF α−
==

11  

and    
α−

=
1

c
i

M
M  ----------------------------------------------------------------------------------(9) 
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Thus the instantaneous MTBF at any point in the test programme is proportional to the 
cumulative MTBF and can be represented by a line parallel to the cumulative plot and 

displaced above it by a factor of 
α−1

1 as shown in Figure 2. 

 ( )
α

α
−

+−=
1

loglogloglog s
si

M
TTM  ---------------------------------------------(10) 

                     

 

 

 
 

 

 

 

 

 
 

Figure 2 - Relationship between Cumulative and Instantaneous MTBF 

2.6 The parameter α  is often misleadingly called the ‘growth rate’.  This would imply 
that the growth rate is constant with time but this is not so. Figure 3 shows, for the Duane 
model, a plot of the instantaneous MTBF (Mi) against test time using linear scales from which 
it can be seen that the model gives a high early growth rate followed by a low rate later.  This 
is a feature common to all growth models but one that tends to be obscured by plots on 
log/log paper. 

The true growth rate is the rate at which Mi increases with time, i.e. dMi/dT.  This can be 
obtained from equations (6) and (9) as: 

 ( )1

1
−⎟

⎠
⎞

⎜
⎝
⎛
−

= α

α
α TK

dT
dM i  

or ( α

α
α −÷⎟

⎠
⎞

⎜
⎝
⎛
−

= 1

1
TK

dT
dM i )  ---------------------------------------------------------------(11) 

2.7 Typically, α  lies between 0.1 and 0.6 and it can be seen, therefore, that the 
denominator of equation (11) increases indefinitely with T.  Hence, the rate of increase of Mi 
falls with time (as illustrated in Figure 3).  Equation (11) may be used as a criterion for 
determining the time when testing ceases to be ‘cost effective’.  For example, if it can be 

α Ms 

Cumulative MTBF (Mc) Log M 

Ts Log T T

Ratio 
  1 
1-α 

Instantaneous MTBF (Mi) 
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established from previous experience that testing ceases to be cost effective when θ〈dTdM i / , 
then the time at which this condition would be met can be derived from equation (11): 

 

 

              KTα
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Figure 3 - Linear Relationship of MTBF with Test Time 
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This criterion is discussed more fully in Part C Chapter 15, Section 3.6. 

2.8 The practical relationships between the main parameters of the model are illustrated in 
Figure 4.  This shows the considerable effect that both the growth parameter ( )α  and the ratio 
of the starting MTBF (MS) to the target MTBF (MT) (MS/MT) have on the test time necessary 
to achieve the target. For example, it will be seen from Figure 4 that if Ms = 60 and α = 0.1, 
then 10000 test hours will only raise the MTBF to just over 100 hours whereas if α  = 0.6, the 
MTBF is raised to 600 hours in only 1000 test hours.  Also, if Ms is estimated as 100 hours, 
then the test time to achieve the predicted MTBF with α = 0.4 is reduced from 9000 hours to 
about 2400 hours.  Ms/MT and α  are important parameters when planning a growth 
programme. 
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3. PRACTICAL APPLICATION  

3.1 The principal value of any growth model is its ability to forecast the MTBF (or some 
other reliability characteristic) which can be achieved by a planned growth programme, and 
later to monitor and assess it.  The Duane model is particularly suitable for this through its 
simplicity of application and its graphical presentation.  Above all, it is practical and it has 
been found that development test data from a wide variety of applications fit the model well.  
Essentially, it relates failure rate or MTBF, to improvement effort and duration.  The duration 
does not necessarily have to be measured as time and, for example, may be the number of test 
cycles or number of test firings, etc. 

3.2 The model does have limitations (see Section 1.7) but generally these do not invalidate 
its use in development testing. 

4. GROWTH PROGRAMME PLANNING 

4.1 To plan a growth programme for any particular test item, specific values must be 
adopted for the model parameters.  It has already been stressed (paragraph 1.2.6) that test 
times can vary considerably depending upon the values adopted and different options may 
need to be examined before arriving at the optimum balance between the variables.  However, 
the prime consideration must be to ensure that the adopted values reflect, as closely as 
possible, what can be achieved in practice. 

4.2 The following describes how the parameters within the Duane Model are derived: 

Target MTBF (MT) is the instantaneous reliability that the system under test is required to 
meet. The MT is derived from the system R&M requirements.  

4.3 Growth Parameter ( )α  is considered to be governed by the intensity and efficiency of 
the ‘test-fix-retest’ process (but see also Appendix 1) and generally falls in the range of 0.35 
to 0.5. 1.0=α  represents a situation in which little consideration is given to reliability during 
development and any growth is due to the correction of faults discovered during performance 
tests, on production and in-use.  On the other hand, 6.0=α  represents a vigorous reliability 
test programme with speedy corrective action and active management support.  It is 
recommended that, in the absence of more specific information, α = 0.4 should be adopted 
for planning purposes when a project development programme includes reliability testing as 
specified in this chapter and effective procedures for speedy corrective action are in place.  It 
should be noted that test times are very sensitive to the value of α . For example, if 4.0=α  
then 9000 test hours would raise the MTBF from 60 to 600 hours, if Ts = 100 hours; if 

41.0=α  only 7600 hours would be required. 

4.4 Starting MTBF (MS) is strictly the cumulative MTBF plotted at Time TS (see 
paragraph 1.2.3) but, when planning, it can be regarded as the MTBF which the equipment 
has at the start of dedicated growth testing (since TS is small compared with the total growth 
programme test time).  Estimates of likely MS should be derived from past experience in 
similar projects, making due allowance for any new design concepts and any other 
influencing factors.  In particular, MS will depend largely upon the extent and effectiveness of 
the design evaluation activities before hardware is committed to test (see Part 2 Chapter 6).  
Beware, however, of adopting over-optimistic values for planning purposes – the adopted 
values must always reflect the available resources.  
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4.5 Test Time. If it were possible for there to be no constraint on test time, the planned 
values of α  and MS/MT will determine the planned growth curve and hence the test operating 
time.  This can be assessed graphically or can be computed from equation (10) by substituting 
MT for Mi in that equation. Generally, however, there is likely to be some constraint on test 
time and this will then determine the values of α  and/or MS/MT which will have to be 
achieved in practice if the target MTBF is to be met within the limited test time. An example 
of this is illustrated in Figure 5 (on page 11).  The example assumes a MT of 600 hours and a 
test time constrained to 6000 hours. From three values of growth parameter ( )α , the 
cumulative MTBF’s which are equivalent to the target are derived (i.e. ( )1cM )TMα−=  (e.g. 
for a α = 0.4 and an MT = 600 hours the MC = 360 hours) and curves drawn downward to 
determine the MS which would be required in each case.  The number of failures arising (as a 
function of time) are also assessed to give an indication of the timing and extent of the other 
resources which will be required, i.e. failure investigation, re-design, etc.  

4.6 Calendar Time. The time (T) in the model is the cumulative operating time.  The 
predicted calendar time of a test programme must allow for the expected down-time involved 
in waiting, diagnosis, repair, modification, etc.  It must be expected that in the early part of 
the test programme there will be a high proportion of down-time because the failure rate will 
be high.  As the programme progresses, so the proportion of operating time will increase. 

5. MONITORING THE MTBF USING DUANE 

5.1 Having set the parameters α , MS/MT and TS for a particular test programme, the 
planned cumulative and instantaneous MTBF (or other reliability characteristic) curves are 
plotted on a log-log scale (see Figure 6 on page 12).  When the programme is planned on the 
basis of discrete test phases, parameter values may need to be set for each test phase. These 
curves provide the datums against which test results are monitored. 

5.2 Once testing is started, the cumulative MTBF (MC) at the time that a failure occurs is 
calculated by dividing all relevant failures∗ which have occurred in the item since T = 0 into 
the total test operating time T. The values of MC are then plotted on the log-log scale for 
comparison with the planned MC values. 

5.3 It is normal to start plotting MC when 100 hours of test data have been accumulated 
(see paragraph 1.2.3) using the earlier data to estimate the starting point, Ms. Frequently, the 
early plots of Mc may be erratic and also show a downward trend.  This can be due to a high 
failure incidence in the early testing period and to delays in modifications coming forward.  
After a few hundred hours, however, the data points should become more orderly and there 
should be clear indications of steady growth.  This is illustrated in Figure 6. 

5.4 Once sufficient points are available for the purpose, the ‘best fit’ straight line is drawn 
through the Mc data points.  Most weight must be given to the later points because of the 
cumulative nature of the plot.  The line should be guided principally by these later points, 
therefore, and fitted to the remaining points, bearing in mind the necessity for weighting. 

5.5 The growth parameter ( )α  is then measured or calculated, and the Mi line drawn 
parallel to and displaced by a factor of α−1/1  above the MC line. It is projected until it 
                                                           
∗ All failures excluding those defined as being not relevant to the MTBF assessment, e.g. secondary, test 
equipment malfunction, operator induced, etc. 
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intersects the target MTBF (MT) to show whether the target will be met within the planned 
timescale (TT) (see Figure 6).  If the current and projected achievements represented by the 
plot differ significantly from those planed, then action must be taken to improve them.  For 
example, the growth parameter is a measure of the corrective action loop.  If it is lower than 
planned, each element of the loop (e.g. data feed-back, re-design, manufacture of 
modifications, etc) should be investigated. 

5.6 When two or more equipments are tested simultaneously, the test operating times and 
failures are totalled.  However, equipment data must be combined so that they relate to the 
same starting and operating times and build standard.  They will then relate to the same stage 
of growth even though they may not have started the growth programme at the same calendar 
date.  It is also important to ensure that each equipment is tested for sufficient time to reveal 
most of the systematic failure modes. 

6. SETTING THE TARGET MTBF 

6.1 The main purpose of any reliability growth model is to quantify the current reliability 
achievement at any point during a test programme and to predict the likely achievement by 
the end of the programme.  There will always be some uncertainty about the results achieved 
because the data may not always fit the model perfectly and the equipment tested may not be 
typical of the whole population. The principal aim, however, must be to develop the 
equipment to that stage at which there can be reasonable confidence about the level of 
reliability that a similar equipment will exhibit. 

6.2 One way of achieving the above aim is to set the target reliability of the equipment 
under test higher than the level required for demonstration or acceptance purposes, i.e. by 
having a safety margin. Alternatively, the reliability predictions may be associated with 
confidence limits.  Appropriate methods are described in References 2 and 3. 

7. LIMITATIONS 

7.1 The Duane model is often criticised theoretically because at zero time it would give 
zero MTBF or infinite failure rate, which is clearly untrue in practice.  The Duane model also 
implies that given sustained reliability effort, growth will go on indefinitely, albeit at a 
decreasing rate. 

7.2 These theoretical limitations do not generally invalidate the model for use during 
development testing since in the very early stages practical results generally exhibit 
considerable scatter, and the levelling of growth often does not occur, if at all, for several 
thousands of hours.  Always providing the data fits the model reasonable well over the range 
of major interest during development testing, it can be used. 

7.3 The Duane model is essentially a graphical technique and, as such, may tend to lack 
accuracy.  In particular, the straightness of a series of plotted points and the fitting of a line to 
cumulative data points can be highly subjective.  Also, being plotted on a logarithmic scale, 
the model is rather insensitive to changes in reliability occurring late in a test programme. 
Care must be taken not to misinterpret the model and generally some additional monitoring 
method, such as a Moving Average of Cusums (Part C Chapter 47), should also be used at 
this time.  This will ensure that current trends are more clearly reflected and 
misinterpretations avoided. 
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7.4 The model assumes a uniform level of testing and improvement effort throughout the 
test programme and the prompt introduction of modification to produce reliability growth.   In 
practice, these conditions may not always be fulfilled. For example, if a number of 
improvements are held back for embodiment at the same time (i.e. a step change in equipment 
standard), then the observed growth may fall below target for a while before the instantaneous 
MTBF shows a sudden improvement.  Fluctuations of this sort are another reason for using 
additional monitoring methods as described in paragraph 1.7.3. 

7.5 When a major re-design of a test item is undertaken during a growth programme, 
which to some extent creates a new equipment, then a significant discontinuity of slope can be 
expected in the plot of test results.  This will require a new ‘datum’ to be established for the 
test plot which takes account of the step-change in MTBF.  A method for doing this may be 
obtained from Reference 4. 
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THE AMSAA RELIABILITY GROWTH MODEL 

 

8. INTRODUCTION  

8.1 The AMSAA reliability growth model was developed by Larry H Crow while at the 
US Army Material Systems Analysis Activity (AMSAA), during the 1970’s.  The reliability 
growth pattern for the AMSAA model is exactly the same pattern as for the Duane postulate; 
however, unlike the Duane postulate the AMSAA model is statistically based.  

8.2 The AMSAA model statistical structure is equivalent to a non-homogeneous Poisson 
Process (NHPP) model with a Weibull intensity function.  This has advantages because the 
parameters of a NHPP can be estimated on a statistically rigorous basis, confidence intervals 
can be obtained and goodness of fit test applied. 

8.3 In accordance with Appendix C of Mil-HDBK-189 [Reference 1] the AMSAA model 
“is designed for tracking the reliability within a test phase and not across test phases” and 
“assumes that based on the failures and test time within a test phase, the cumulative failure 
rate is linear on log-log scale.  This is a local, within test phase pattern for reliability growth 
comparable to the global pattern noted by Duane”.  

8.4 The AMSAA model analyzes the reliability growth progress within each test phase 
and can aid in determining the following: 

a) Reliability of the configuration currently on test 

b) Reliability of the configuration on test at the end of the test phase 

c) Expected reliability if the test time for the test phase is extended 

d) Growth rate 

e) Available confidence intervals 

f) Applicable goodness-of-fit tests 

9. MODEL DEVELOPMENT 

9.1 The transition from Duane to the Weibull Intensity Function form is made by 
substituting 1-α for β, where β determines the shape and using λ for a scale parameter. λ and β 
can be determined using maximum likelihood estimators rather than β being assumed to be 
fixed (as in the Duane Model). 

9.2 Duane first observed that the number of failures accumulated for a system at the total 
operating time t could be approximated by , in which βλt λ  and β  must be less than one for 
representation of reliability growth.  Crow [Reference 5] formulated a statistical model to 
describe the pattern of reliability growth. This model provides that the average number of 
failures accumulated by time t is expressed as , but the actual number of failures observed βtλ
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to that time is a random variable described by the Weibull process.  This development 
provides a method for calculating statistically valid estimates of the system MTBF if no 
further improvements are incorporated.  This constitutes a means for monitoring reliability 
growth during the development process. 

10. BASICS OF THE MODEL 

10.1 This section summarises the basics of the model as described in Mil-Hdbk-189 
[Reference 1].  For a more detailed description see Mil-Hdbk-189 [Reference 1].   

10.2 The AMSAA reliability growth model assumes that within a test phase failures are 
occurring according to a Non-Homogeneous Poisson process, with the intensity of failures 
during the test phase is represented by a Weibull intensity function ρ(t). 

10.3 The observed cumulative failure rate (C(t)) is defined as 

C(t) = N(t)/t 

where the total number of failures (N(t)) accumulated on all test items in the cumulative test 
time t, is a random variable which follows a Non-Homogeneous Poisson distribution.  Where, 
the probability that exactly n failures occur between the initiation of testing and test time t is 

( )( ) ( ) ( )

!n
etntNP

tn θθ −

==  

10.4 The expected (mean) number of failures by time t (θ(t)) is of the form 

θ(t) = λtβ 

in which λ  and β  are positive parameters. 

10.5 change in time (Δt), ρ(t) Δt is approximately the probability of a system failure in the 
interval (t, t + Δt). The AMSAA model assumes that 

( ) 1−= βλβρ tt  

where t is the cumulative test time, λ is the scale parameter, β characterises the shape of the 
graph of the intensity function e.g. when β=1, ρ(t)= λ the homogeneous Poisson or 
Exponential distribution, when β<1, ρ(t) is decreasing implying reliability growth and when 
β>1, ρ(t) is increasing implying a decrease in system reliability. 

10.6 When production commences the design is fixed and therefore no further reliability 
improvement is assumed.  The constant value of the intensity function of the production 
model should be approximately equal to the value of the intensity function at the end of 
development testing.  Thus the anticipated MTBF for the production model is equal to the 
reciprocal of the intensity function at the end of the development phase as follows 

1

1)( −= βλβt
tm  
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10.7 Number of failures in an interval from test time ‘a’ until test time ‘b’ is a random 
variable having the Poisson distribution with mean 

 ( ) ( ) ( )ββλθθ abab −=−  

The number of failures occurring in any interval is statistically independent of the number of 
failures in any interval that does not overlap the first interval and only one failure can occur at 
any instant. 

11. GRAPHICAL ASSESSMENT OF RELIABILITY GROWTH 

11.1 This section summarises the graphical assessment methods as described in Mil-Hdbk-
189 [Reference 1].   

11.2 Plots derived from the failure data provide a graphic description of test results and can 
be used to obtain rough estimates of the reliability parameters of interest in the reliability 
growth process.  Two types of graphical methods are used: 

a) Average Failure Frequency Plot 

b) Cumulative Failure Plot 

11.3 Average Failure Frequency Plot tells the analyst if growth is obviously demonstrated 
by the data and yields a crude approximation of the intensity function.  The Average Failure 
Frequency Plot is constructed as follows: 

a) Divide the elapsed test time into at least three non-overlapping intervals, which can be 
of unequal length.  

b) Calculate the frequency of occurrence of failures within each interval by dividing the 
number of failures in the interval by its length.  

c) Plot the failure frequency as a horizontal line at the appropriate ordinate. The line 
should extend over the abscissas corresponding to time within the interval.  Any 
significant increasing or decreasing trend in the intensity function should be apparent 
from this plot. 

11.4 Cumulative Failure Plot is a graph of the observed cumulative number of failures 
plotted against cumulative test time on full logarithmic paper, which provides crude estimates 
of the parameters which describe the intensity function.  Taking logarithms in the expression 
for the expected (mean) number of failures by time t yields the result 

tt loglog)(log βλθ +=  

11.5 Therefore, the expression for θ(t) is represented by a straight line on full logarithmic 
paper.  A line drawn to fit the data points representing the cumulative number of failures at 
the time of each failure occurrence is a suitable approximation of the true line.  The ordinate 
of the point of the line corresponding to t=1 is an estimate of the scale parameterλ . The slope 
of the line yields an estimate of the shape parameter β . 
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11.6 Appendix C of Mil-Hdbk-189 [Reference 1] contains an example which demonstrates 
the graphical estimation procedures.  

11.7 The method for estimating the scale and shape parameters and therefore the intensity 
function within this section is satisfactory for a quick analysis of the data; however, the 
statistical estimates described in paragraph 2.5 provide a more precise description of the 
growth process. 

12. STATISTICAL ASSESSMENT OF RELIABILITY GROWTH 

12.1 The statistical assessment sections summarise the statistical assessment methods as 
described in Mil-Hdbk-189 [Reference 1].  

12.2 Procedures for point estimation and interval estimation of MTBF are described below 
for data consisting of failure times from testing terminated at a given time (see Section 2.6) or 
for data consisting of failure times from testing terminated at the occurrence of a specified 
number of failures (see Section 2.7).  A goodness of fit test to determine whether the model is 
appropriate to describe the data, is also described below.  

12.3 If the exact times or failure occurrence are unknown, as they are only uncovered 
during inspection following the testing, it is still possible to utilise the reliability growth 
model by grouping the data as described in Section 0. 

13. STATISTICAL ASSESSMENT OF TIME TERMINATED TESTING 

13.1 The procedures described in this section are to be used to analyse data from tests, 
which are terminated at a predetermined time, or tests, which are in progress with data 
available through some time.  The required data consists of the cumulative test time on all 
systems at occurrence of each failure as well as the accumulated test time.  To calculate the 
cumulative test time of a failure occurrence it is necessary to sum the test time on every 
system at that instant.  The data then consists of the N successive failure times X1, X2 …., XN 
which occur prior to the accumulated test time T. 

13.2 Point Estimation. The method of maximum likelihood provides point estimate of the 
shape parameter β  and the scale parameterλ .  The shape parameter β  is estimated as 
follows: 

 
i

N

i
XnnTN

N

∑
=

−
=

1
11

β̂  

Subsequently, the scale parameter λ  is estimated as follows: 

β
λ ˆ
ˆ

T
N

= .   

And for any time t the intensity function is estimated as follows: 

( ) 1ˆˆˆˆ −= ββλρ tT  .   
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13.3 In particular, this holds for T, the accumulated test time. The reciprocal of ( )Tρ̂  
provides an estimate of the MTBF, which could be anticipated if the system configuration 
remains as it is at time T. 

An example of Point Estimation is contained in Appendix C of Mil-Hdbk-189 [Reference 1]. 

13.4 Interval Estimation. Interval estimates provide a measure of the uncertainty 
regarding the demonstration of reliability by testing. For the reliability growth process the 
parameter of primary interest is the MTBF that the system would exhibit after the initiation of 
production.  

13.5 The values in Table 1 (page 22) facilitate computation of confidence interval estimates 
for the MTBF. The table provides two-sided interval estimates on the ratio of the true MTBF 
to the estimated MTBF for several values of the confidence coefficient. If the number of 
failures is N and the selected confidence coefficient isγ , then the appropriate tabular values 
are  and . The interval estimate of MTBF is γ,NL γ,NU

( ) ( )t
U

MTBF
t

L NN

ρρ
γγ

ˆˆ
,, ≤≤  

13.6 Because the number of failures has a discrete probability distribution, the interval 
estimates are conservative and the actual confidence coefficient will be slightly larger than the 
stated confidence coefficient. 

An example of Interval Estimation is contained in Appendix C of Mil-Hdbk-189 [Reference 
1]. 

13.7 Goodness of Fit.  The null hypothesis that a non-homogeneous Poisson process with 
an intensity function of the form  that properly describes the reliability growth of a 
particular system is tested by the use of Cramér-von Mises statistic.   An unbiased estimate of 
the shape parameter 

1−βλβt

β  is used to calculate the goodness of fit as follows for a time 
terminated test with N failure occurrences: 

 ββ ˆ1
N

N −
=  

The goodness of fit statistic is then calculated as follows, with the failure times being ordered 
so that O<X1≤X2≤ … ≤XN: 

 

2

1

2

2
12

12
1 ∑

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−⎟

⎠
⎞

⎜
⎝
⎛+=

N

i

i
N N

i
T
X

N
C

β

 

13.8 The null hypothesis is rejected if the statistic  exceeds the critical value for the 
level of significance selected by the analyst.  Critical values of  for the .20, .15, .10, .05 
and .01 levels of significance (

2
NC

2
NC

)γ  are in Table 2 (page 23).  That table is indexed by a 
parameter labelled M.  For time terminated testing M is equal to N, the number of failures.  If 
the test rejects the reliability growth model, an examination of the data may reveal the reason 
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for the lack of fit.  Possible causes of rejection include the occurrence of more than one failure 
at a time or the occurrence of a discontinuity in the intensity function.  In the first case, an 
appropriate procedure may be to group the data as explained in Section 0.  In the latter case 
the data should be treated as described in paragraph 0. 

An example of Goodness of Fit Estimation is contained in Appendix C of Mil-Hdbk-189 
[Reference 1]. 

14. STATISTICAL ASSESSMENT OF FAILURE TERMINATED 
TESTING 

14.1 The procedures described in this section are applicable to tests that are terminated 
upon the accumulation of a specified number of failures.  The procedures are only slightly 
different from those used for time terminated testing.  The data consists of the N failure times 
X1, X2 …., XN expressed in terms of cumulative test time and arranged in ascending order.  

14.2 Point Estimation.  The method of maximum likelihood furnishes point estimates of 
the shape parameter β  and the scale parameterλ .  The estimate of β  is 

 
( ) i

N

i
N XnnXN

N

∑
−

=

−−
= 1

1

111
β̂  

Note that this is equivalent to the estimate for time terminated testing with the test time equal 
to the time of occurrence of the last failure. The scale parameter λ  is estimated by 

 
β

λ ˆ
ˆ

T
N

=  

as before. The intensity function and mean time between failures are estimated as in 
paragraph 0. For small sample sizes use of the unbiased estimator β  given in paragraph 0 is 
advisable. 

An example of Point Estimation is contained in Appendix C of Mil-Hdbk-189 [Reference 1]. 

14.3 Interval Estimation. An interval estimate of the MTBF that the system would exhibit 
in the absence of further changes is also available for the case of failure terminated testing.  
Table 3 (page 24) provides factors for the construction of two-sided interval estimates of the 
MTBF for several values of the confidence coefficient γ .  As before the interval estimate of 
MTBF is 

( ) ( )t
U

MTBF
t

L NN

ρρ
γγ

ˆˆ
,, ≤≤  

An example of Interval Estimation is contained in Appendix C of Mil-Hdbk-189 [Reference 
1]. 

14.4 Goodness of Fit. The hypothesis that the AMSAA model is appropriate can be tested 
using a Cramér-von Mises statistic. It is important to note the difference in the calculations 
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from those for time-terminated testing. An unbiased estimate of the shape parameter is given 
by  

ββ ˆ2
N

N −
=  

which is used in the calculation of the goodness of fit statistic. The parameter for indexing 
that statistic is M which is one less than N, the number of failures.  The Cramér-von Mises 
statistic is then 
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2
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14.5 Table 2 (page 23) provides critical values for use in the test.  The model is deemed 
inappropriate if the statistic  exceeds the critical value for some specified level of 
significance 

2
MC

α . 

An example of Goodness of Fit Estimation is contained in Appendix C of Mil-Hdbk-189 
[Reference 1]. 

15. STATISTICAL ASSESSMENT OF GROUPED DATA 

15.1 When the exact time of failure is not known as the failure does not preclude the 
operation of the equipment, it is possible to predict the MTBF by grouping the failures that 
have occurred during an interval.  It can be assumed that a failure identified during inspection 
arise in the interval since the last inspection.  The total number of failures in the interval 
between inspections is therefore the sum of the number of failures detected at the time of 
occurrence and the number of failures found in the inspection.  The total number of failures 
for each interval can then be used to estimate reliability growth in accordance with the 
AMSAA model providing there are at least three intervals, which do not have to be of equal 
length.  

15.2 For more information on how to calculate the point estimation of the MTBF and 
Goodness of Fit for grouped failures see Mil-Hdbk-189 [Reference 1]. 

16. DISCONTINUITIES IN THE INTENSITY FUNCTION 

16.1 This section summarises the assessment method used to calculate the MTBF of a 
system which has a discontinuous intensity function as described in Mil-Hdbk-189 [Reference 
1].   

16.2 The simultaneous introduction of several design changes or some other factor may 
cause an abrupt change in the intensity function.  Such a jump should be detected by a 
departure from linearity in the full logarithmic plot of cumulative failures, a large change in 
the level of the average failure frequency, or rejection of the model by a goodness of fit test. 

16.3 The cumulative test time at which a discontinuity has occurred can be determined by 
inspection from graphs of cumulative failures or average failure frequency.  The methods 
presented above can then be used to estimate the intensity function by use of different 
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parameters for the period before the jump and for the period after the jump.  That is, if the 
discontinuity occurs at time TJ, then the intensity function is estimate by 

( ) 1ˆ
11 1ˆˆˆ −= ββλρ tt   JTtO ≤<  

          ( ) 1
22

2ˆˆ −−= ββλ JTt JTt >

in which 1λ  and 1β  are estimated only from failures on or before TJ and 2λ  and 2β  are 
estimated from those failures occurring after TJ.  Only the second of these equations is needed 
to estimate the currently achieved value of the intensity function. 

An example of calculating the Intensity Function for discontinuities in the Intensity Function 
is contained in Appendix C of Mil-Hdbk-189 [Reference 1]. 
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Tables 

 
.80 .90 .95 .98           γ  

N L U L U L U L U 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20. 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
35 
40 
45 
50 
60 
70 
80 
100 

.261 

.333 

.385 

.426 

.459 

.487 

.511 

.531 

.549 

.565 

.579 

.592 

.604 

.614 

.624 

.633 

.642 

.650 

.657 

.664 

.670 

.676 

.682 

.687 

.692 

.697 

.702 

.706 

.711 

.729 

.745 

.758 

.769 

.787 

.801 

.813 

.831 

18.66 
6.326 
4.243 
3.386 
2.915 
2.616 
2.407 
2.254 
2.136 
2.041 
1.965 
1.901 
1.846 
1.800 
1.759 
1.723 
1.692 
1.663 
1.638 
1.615 
1.594 
1.574 
1.557 
1.540 
1.525 
1.511 
1.498 
1.486 
1.475 
1.427 
1.390 
1.361 
1.337 
1.300 
1.272 
1.251 
1.219 

.200 

.263 

.312 

.352 

.385 

.412 

.436 

.457 

.476 

.492 

.507 

.521 

.533 

.545 

.556 

.565 

.575 

.583 

.591 

.599 

.606 

.613 

.619 

.625 

.631 

.636 

.641 

.646 

.651 

.672 

.690 

.705 

.718 

.739 

.756 

.769 

.791 

38.66 
9.736 
5.947 
4.517 
3.764 
3.298 
2.981 
2.750 
2.575 
2.436 
2.324 
2.232 
2.153 
2.087 
2.029 
1.978 
1.933 
1.893 
1.858 
1.825 
1.796 
1.769 
1.745 
1.722 
1.701 
1.682 
1.664 
1.647 
1.631 
1.565 
1.515 
1.476 
1.443 
1.393 
1.356 
1.328 
1.286 

.159 

.217 

.262 

.300 

.331 

.358 

.382 

.403 

.421 

.438 

.453 

.467 

.480 

.492 

.503 

.513 

.523 

.532 

.540 

.548 

.556 

.563 

.570 

.576 

.582 

.588 

.594 

.599 

.604 

.627 

.646 

.662 

.676 

.700 

.718 

.734 

.758 

78.66 
14.55 
8.093 
5.862 
4.738 
4.061 
3.609 
3.285 
3.042 
2.852 
2.699 
5.574 
2.469 
2.379 
2.302 
2.235 
2.176 
2.123 
2.076 
2.034 
1.996 
1.961 
1.929 
1.900 
1.873 
1.848 
1.825 
1.803 
1.783 
1.699 
1.635 
1.585 
1.544 
1.481 
1.435 
1.399 
1.347 

.124 

.174 

.215 

.250 

.280 

.305 

.328 

.349 

.367 

.384 

.399 

.413 

.426 

.438 

.449 

.460 

.470 

.479 

.488 

.496 

.504 

.511 

.518 

.525 

.531 

.537 

.543 

.549 

.554 

.579 

.599 

.617 

.632 

.657 

.678 

.695 

.722 

198.7 
24.10 
11.81 
8.043 
6.254 
5.216 
4.539 
4.064 
3.712 
3.441 
3.226 
3.050 
2.904 
2.781 
2.675 
2.584 
2.503 
2.432 
2.369 
2.313 
2.261 
2.215 
2.173 
2.134 
2.098 
2.068 
2.035 
2.006 
1.980 
1.870 
1.788 
1.723 
1.671 
1.591 
1.533 
1.488 
1.423 

 
For N > 100, 

 
2

2
5.

2/1
−

⎟
⎠
⎞

⎜
⎝
⎛ + ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= NZL γ&   22/1

2
5.

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎠
⎞

⎜
⎝
⎛ +

NZU γ&  

in which  
⎟
⎠
⎞

⎜
⎝
⎛ +

2
5. γZ  is the th−⎟

⎠
⎞

⎜
⎝
⎛ +

2
5. γ

 percentile of the standard normal distribution. 

 

Table 1 - Confidence Intervals for MTBF from Time Terminated Test 
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       α  
M .20 .15 .10 .05 .01 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
30 
60 
100 

.138 

.121 

.121 

.121 

.123 

.124 

.124 

.125 

.125 

.126 

.126 

.126 

.126 

.126 

.127 

.127 

.127 

.127 

.128 

.128 

.128 

.129 

.149 

.135 

.134 

.137 

.139 

.140 

.141 

.142 

.142 

.143 

.144 

.144 

.144 

.144 

.145 

.145 

.146 

.146 

.146 

.146 

.147 

.147 

.162 

.154 

.155 

.160 

.162 

.165 

.165 

.167 

.167 

.169 

.169 

.169 

.169 

.169 

.171 

.171 

.171 

.171 

.172 

.172 

.173 

.173 

.175 

.184 

.191 

.199 

.204 

.208 

.210 

.212 

.212 

.214 

.214 

.214 

.214 

.215 

.216 

.217 

.217 

.217 

.217 

.218 

.220 

.220 

.186 

.23 

.28 

.30 

.31 

.32 

.32 

.32 

.32 

.32 

.32 

.33 

.33 

.33 

.33 

.33 

.33 

.33 

.33 

.33 

.33 

.34 
  

For M>100 use values for M = 100. 

Table 2 – Critical Value Cramér-Von Mises Goodness of Fit Test 
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.80 .90 .95 .98        γ  

 
N L U L U L U L U 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20. 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
35 
40 
45 
50 
60 
70 
80 
100 

.8065 

.6840 

.6601 

.6568 

.6600 

.6656 

.6720 

.6787 

.6852 

.6915 

.6975 

.7033 

.7087 

.7139 

.7188 

.7234 

.7278 

.7320 

.7360 

.7398 

.7434 

.7469 

.7502 

.7534 

.7565 

.7594 

.7622 

.7649 

.7676 

.7794 

.7894 

.7981 

.8057 

.8184 

.8288 

.8375 

.8514 

33.76 
8.927 
5.328 
4.000 
3.321 
2.910 
2.634 
2.436 
2.287 
2.170 
2.076 
1.998 
1.933 
1.877 
1.829 
1.788 
1.751 
1.718 
1.688 
1.662 
1.638 
1.616 
1.596 
1.578 
1.561 
1.545 
1.530 
1.516 
1.504 
1.450 
1.410 
1.378 
1.352 
1.312 
1.282 
1.259 
1.225 

.5552 

.5137 

.5174 

.5290 

.5421 

.5548 

.5668 

.5780 

.5883 

.5979 

.6067 

.6150 

.6227 

.6299 

.6367 

.6431 

.6491 

.6547 

.6601 

.6652 

.6701 

.6747 

.6791 

.6833 

.6873 

.6912 

.6949 

.6985 

.7019 

.7173 

.7303 

.7415 

.7513 

.7678 

.7811 

.7922 

.8100 

72.67 
14.24 
7.651 
5.424 
4.339 
3.702 
3.284 
2.989 
2.770 
2.600 
2.464 
2.353 
2.260 
2.182 
2.144 
2.056 
2.004 
1.959 
1.918 
1.881 
1.848 
1.818 
1.790 
1.765 
1.742 
1.720 
1.700 
1.682 
1.664 
1.592 
1.538 
1.495 
1.460 
1.407 
1.367 
1.337 
1.293 

.4099 

.4054 

.4225 

.4415 

.4595 

.4760 

.4910 

.5046 

.5171 

.5285 

.5391 

.5488 

.5579 

.5664 

.5743 

.5818 

.5888 

.5954 

.6016 

.6076 

.6132 

.6186 

.6237 

.6286 

.6333 

.6378 

.6421 

.6462 

.6502 

.6681 

.6832 

.6962 

.7076 

.7267 

.7423 

.7553 

.7759 

151.5 
21.96 
10.65 
7.147 
5.521 
4.595 
4.002 
3.589 
3.286 
3.054 
2.870 
2.721 
2.597 
2.493 
2.404 
2.327 
2.259 
2.200 
2.147 
2.099 
2.056 
2.017 
1.982 
1.949 
1.919 
1.892 
1.866 
1.842 
1.820 
1.729 
1.660 
1.606 
1.562 
1.496 
1.447 
1.409 
1.355 

.2944 

.3119 

.3368 

.3603 

.3815 

.4003 

.4173 

.4327 

.4467 

.4595 

.4712 

.4821 

.4923 

.5017 

.5106 

.5189 

.5267 

.5341 

.5411 

.5478 

.5541 

.5601 

.5659 

.5714 

.5766 

.5817 

.5865 

.5912 

.5957 

.6158 

.6328 

.6476 

.6605 

.6823 

.7000 

.7148 

.7384 

389.9 
37.60 
15.96 
9.995 
7.388 
5.963 
5.074 
4.469 
4.032 
3.702 
3.443 
3.235 
3.064 
2.921 
2.800 
2.695 
2.604 
2.524 
2.453 
2.390 
2.333 
2.281 
2.235 
2.192 
2.153 
2.116 
2.083 
2.052 
2.023 
1.905 
1.816 
1.747 
1.692 
1.607 
1.546 
1.499 
1.431 

  
for N>100, 
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2
5. γ  percentile of the standard normal distribution. 

 

Table 3 – Confidence Intervals for MTBF from Failure Terminated Test 
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LEAFLET D8/1 

EFFECT OF DELAYED DESIGN CHANGES ON THE DUANE MODEL 

 

1. INTRODUCTION 

Most people who have experience of using growth models are aware that the growth 
parameters are significantly influenced by what happened during the early test period.  An 
example of this is the effect of the time between design changes e.g. design changes tend to 
be incorporated at specific times (say at build standard changes) rather than continuously in 
time.   It is shown below by means of an example that this can have a significant effect on the 
growth parameterα .   In fact the larger the update periods, the larger the growth is for growth 
programmes that are similar in all other respects.  This means that the common assertion that 
α  is closely related to the growth effort must be treated with some reserve as a programme 
with delayed design changes can give a spuriously highα value. 

2. EXAMPLE 

2.1 Assume that the MTBF is constant between design changes which occur at fixed 
intervals of length ti.   

2.2 Suppose that when ti = 10 the cumulative MTBF (Mc) follows the Duane model with 
α  = 0.4 and passes through the point Mc(10) = 2.5 hours. This line is shown in Figure 1.  The 
theoretical values of instantaneous MTBF (Mi) based on this model is shown by the top line in 
Figure 1.  In fact the true Mi values will be a step function, starting with Mi = 2.5 hours for 
0<t<10 hours. 

2.3 Consider now the same growth programme but with updates every 100 hours. For the 
first 100 hours the MTBF will be 2.5 hours, the starting MTBF (Ms).  Assuming points are 
only plotted every 100 hours (it is likely that data will be analysed at such times) the first 
point will be plotted at t = 100, Mc (100) = 2.5.  At 100 hours the design changes will be 
incorporated and the MTBF will increase to what it was in the 10 hour update case, i.e. about 
10.5 hours. At 200 hours, the time of the next update, Mc(200) will be expected to be: 

200  (total failure to date) ÷

i.e. ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +÷=

5.10
100

5.2
100200200cM  

i.e.  hours ( ) 04.4200 =cM

2.4 Continuing in this way produces the ‘dot & dashed’ line in Figure 1.  The α  value for 
this line is 0.64. Thus changing the design update interval from 10 to 100 hours has changed 
α  from 0.4 to 0.64, a change of 60%. However, the actual growth effort is the same and Mi(t) 
will be the same in each case for t an integer multiple of 100 hours. 
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Figure 1 - Effect of Design Update Interval on the Duane Growth Parameter 

3. DISCUSSION 

In practice the situation will not be quite this simple as not all design changes are effective 
and therefore the slower they are incorporated the slower the true growth rate is likely to be. 
Also the ‘dot & dashed’ in Figure 1 will not in the long-term follow a straight line.  In fact, it 
will asymptotically approach the line of crosses.  However, the example suffices to show the 
nature of the problem. 
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EXAMPLE RELIABILITY GROWTH MODELS 

 

1. INTRODUCTION 

1.1 Two Excel based models are provided with this chapter to enable the reader to test the 
theories and offered in support of reliability growth modelling 

1.2 Each model is write protected and should be downloaded to the host computer, write 
enabled and saved with the name of choice. 

2. DUANE 

2.1 The Duane model is used frequently in reliability growth assessment to plot the linear 
relationship of cumulative failure rate verses the cumulative test time. 

2.2 The model in this workbook is based on an empirical model first observed by J.T. 
DUANE (General Electrical Company 1962): Duane Model (link). 

3. AMSAA 

In accordance with Appendix C of Mil-HDBK-189 [Reference 1] the AMSAA model “is 
designed for tracking the reliability within a test phase and not across test phases” and 
“assumes that based on the failures and test time within a test phase, the cumulative failure 
rate is linear on log-log scale. This is a local, within test phase pattern for reliability growth 
comparable to the global pattern noted by Duane”: AMSAA Model (link). 
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