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Chapter 7 
Test Results Analysis, Parameter Estimation, Confidence Intervals and Hypothesis Testing 

1.1 Part 4, Chapter 3 (Statistical Distributions) addresses the probability of a specific result 
given the knowledge of the relevant parameter including its distribution.  There is however a 
second way of approaching the situation.  That is, given the results of one or more trials, what 
can be said about the relevant parameters ? 

1.2 Stochasitic parameters such a Reliability cannot be measured directly and repeatably.  
They can only be measured to a level of statistical confidence.  This level of confidence will 
increase with more data but it can never reach 100% (i.e. you can never be certain of the true 
reliability).  A level of confidence can be calculated, from the practical results, that the real 
MTBF lies between two bounds or is to one side of a single bound. 

1.3 This chapter addresses: 

a) Weibull analysis of failure data to assess whether the data is consistent with a 
constant failure rate regime; 

b) the estimation of parameters of a distribution (like the MTBF in the previous 
paragraph); 

c) the level of confidence that a given value or range of a parameter is correct; and 

d) the generation and testing of hypotheses about the value of such parameters. 

1.4 It may surprise many R&M practitioners to discover that the subject of this leaflet is of 
great conceptual and philosophical difficulty for statisticians.  In fact, the problems of 
estimation, confidence intervals and the inferences which can be drawn from sample data, 
have been the subject of fierce debate for 70 years, and are at the core of the controversies 
between ‘Bayesian’ and classical statisticians.  Since there is no way the subject could 
possibly be covered in a few paragraphs here, the following discussion is inevitably 
superficial. 

1.5 In general this chapter follows the approach of classical statistics but notes where 
significant differences occur with the Bayesian approach. 
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2 WEIBULL ANALYSIS 

This section is not required to support the chapters being written at the time of issue.  It will 
be completed later. 
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3 PARAMETER ESTIMATION 

3.1 A population measure, say η, is estimated by a sample measure, say ηs.  If the sample 
size is large, one may expect ηs to lie very close to η; conversely, if the sample size is small, 
one would be less sure that ηs would lie near to η.  ηs is known as a point estimate of η. 

3.2 Suppose ηs is measured from a sample of size n.  If the sample is returned to the 
population and another random sample of n drawn, ηs will in general be different for the two 
samples.  If ηs is measured for many such samples, the different values of ηs and their relative 
frequency form a distribution with PDF f(ηs) say. 

 
Figure 1:  PDF of sample measure �s 

3.3 It is generally considered desirable in classical statistics to calculate ηS in such a way 
that the mean, or expected value, of the distribution f(ηS) equals the population parameter η.  
ηS is then called an UNBIASED ESTIMATE of η.  For example, when estimating the 
standard deviation (σ) of a population by measuring the standard deviation (s) of a sample, 
the reason that the denominator of the expression for s is made (n-1) rather than n (see para. 
3) is in order that s is unbiased. 

3.4 Although in this chpater, unbiased estimators are generally given, it should be noted 
that it is not self-evident that unbiased estimators are ‘best’1, or even possible in many 
applications.  In general, it is often difficult to obtain an unbiased estimate of some parameter 
η.  Further, unbiased estimates have certain undesirable properties, perhaps the main one 
being that if ηs is an unbiased estimate of η, it is not generally true that g(ηs) is an unbiased 
estimate of g(η), (where g indicates ‘function’).  It is not proposed to pursue the discussion 
further here; its main purpose was to show that estimation is not always as obvious and 
straightforward as it seems, a point which comes over even more strongly in the following 
paragraphs on Confidence Intervals. 

4 CONFIDENCE INTERVALS 

4.1 In para. 3.1 it was stated that one makes an estimate (ηs), based on a sample, because it 
is likely that ηS is near to η.  It is a natural progression from this to associate an interval with 
ηS within which it is likely that η lies.  Suppose such an interval is denoted by ηL and ηU, 
such that ηL < ηS < ηU.  The classical statistician defines the interval ηL to ηU as the γ% 
Confidence Interval (CI) on the point estimate ηS, when ηL and ηU are calculated in such a 
way that if a large number of equal samples were drawn from the population and ηL and ηU 
calculated for each sample, then about γ% of the intervals would contain the population 
parameter η.  In order to ‘locate’ ηL and ηU unambiguously, it is normally assumed that in 
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2
γ100 − % of cases, η would be less than ηL, and in a further 

2
γ100 − % η would be greater 

than ηU.  (It is not discussed at this stage how to calculate ηL and ηU in general, except to note 
that it depends on ηS, γ, the sample size and the nature of the parameter being estimated.) 

4.2 It is a popular misconception that the above definition of a CI means that there is a γ% 
probability that η lies in the interval ηL to ηU.  Statisticians do not admit that this inference is 
permissible, one reason being that η is not a random variable.  Classical statisticians only 
make statements about probability of occurrence of a random variable.  Having calculated an 
interval ηL to ηU based on an observed ηS, then η, which is a fixed albeit unknown number, 
either does or does not lie in the interval.  In classical statistics there is no probability about it. 

4.3 The growth in the popularity of Bayesian statistics is partly due to a dissatisfaction with 
the above approach.  As indicated in PtDCh2, ‘Bayesians’ claim that it is reasonable to make 
probability statements about possible values for η, and indeed they formulate PDFs for η, in 
which a prior PDF for η is modified by sample results using Bayes Theorem to yield a 
posterior PDF for η.  In Bayesian statistics this posterior distribution is used to provide 
Bayesian probability intervals and the parameter estimate.  A Bayesian γ% probability 
interval is a statement that the probability is γ% that η lies in the interval.  It should be noted, 
however, that a ‘Bayesian’ would not make such a statement using a CI calculated in the 
classical manner.  A Bayesian calculation requires a prior distribution, even of ‘prior 
ignorance’.  It is shown in PtDCh2 that even if prior ignorance is expressed as ‘all possible 
values of η are equally likely’ (the uniform prior), then Bayesian CIs differ from classical 
ones.  (The classical approach assumes that nothing is known other than what is observed 
from the sample.) 

4.4 In this chapter the CIs offered are calculated in the classical manner. 

4.5 In the previous paragraphs two-sided CIs have been discussed; i.e. both ηL and ηU are 
of interest.  Sometimes only one of these is of interest.  The CI is then referred to as a ONE-
SIDED CI.  Suppose a one-sided γ% upper confidence limit is defined by ηU.  This means 
that if ηU is calculated for a large number of equal samples, then η is less than ηU for about 
γ% of the samples.  Thus if ηU is the upper limit of a γ% two-sided CI, then (-∞,ηU) would be 

a ⎟
⎠
⎞

⎜
⎝
⎛ −

+
2

γ100γ % one-sided CI.  Similarly, one can think of one-sided lower limits. 

5 CONFIDENCE LEVELS 

5.1 It has become common in reliability work to quote confidence intervals with low values 
of γ, of say 50%, 60%, etc.  The main justification for this practice appears to be that 
reliability data is often so bad that using these values for γ is the only way to obtain 
reasonably narrow CIs.  This practice is deprecated for two-sided intervals.  Many readers of 
reports look only at the interval, without regard to the confidence level, γ, used.  They 
therefore receive a false impression of the accuracy of a measurement if low γ values are 
used.  It is recommended that γ should be at least 80%, and preferably 90% or more when 
presenting two-sided results.  If this results in wide CIs, then so be it.  At least then it 
accurately reflects the quality of the parameter estimate.   
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5.2 However, the 50% one-sided limit is of interest, since it provides the MEDIAN 
UNBIASED ESTIMATOR of η; i.e. if the 50% upper (or lower) confidence bound is 
calculated for a large number of samples then it will be greater than η in about half the cases 
and smaller than η in the rest.  (Note that the upper and lower 50% one-sided limits coincide). 

5.3 In practice, for parameters such as MTBF, the 60% one-sided lower confidence limit is 
normally quoted.  This provides a value which errs to the ‘safe’ side of the median unbiased 
estimator without producing an unrealistically low value. 

6 SIGNIFICANCE OR HYPOTHESIS TESTING 

6.1 Hypothesis testing links theoretically derived values for performance parameters to the 
real world and practical results.  It enables a comparison to be made between theoretical 
estimates or specification values and practical experience.  For example, an analyst may have 
a hypothesis for the value of η.  This may arise from: 

a) previous work or theoretical assessment having led to the expectation that that η 
should have the value ξ say; or 

b) a specification requirement that needs to be tested. 

There is then the wish to examine whether the sample under analysis is consistent with, i.e. 
supports, the hypothesis, or not.  To do so requires a significance test or hypothesis test to be 
conducted. 

6.2 To perform a significance test the analyst simply examines whether ξ lies in the γ% CI 
ηL to ηU.  If it does, he can say that “ηS is not statistically significantly different from ξ at the 
(100-γ)% level of significance”.  This means that the sample data are not inconsistent with the 
hypothesis that they were drawn from a population in which the parameter of interest had the 
value ξ.  (Note that this should not be interpreted as a ‘proof’ that the original hypothesis is 
true.)  If ξ lies outside the range ηL to ηU then ηS is significantly difference from ξ and one 
can say that if the population parameter were ξ, then the probability of drawing the observed 
sample is less than (100-γ)%. 

6.3 A common error in using significance tests is to use them in situations where one has no 
prior hypothesis.  Analysts are particularly prone to test whether ηS is statistically 
significantly different from zero, and if this is not so, to simplify the analysis by assuming 
that they have shown that it is reasonable to take η as zero and proceed on that basis.  If there 
are no a priori grounds for believing η to be zero, then there is no reason to take η as zero in 
preference to any other value in the CI.  ‘Zero’ may only be in the CI because the CI is wide.  
In fact, the best value to take is ηS.  The point to remember is that ‘not statistically 
significantly different from’ does not mean ‘negligibly different from’ or ‘very near’.  A 
statistically non-significant difference may have considerable practical significance. 

6.4 Where significance tests are used repeatedly, for example in lot sampling in a 
production process, it must be recognised that failures to pass the test will occur from time to 
time simply due to statistical variation, and that this can occur surprisingly quickly in 
repeated tests.  For example, if an event has a probability of occurrence of 1 in 20, there is a 
probability of 30% of it occurring at least once in 7 opportunities. 
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6.5 There are two types of error that can occur in hypothesis testing.  First the hypothesis 
can be rejected when it is true.  The probability of this error is usually denoted by α.  Second 
a false hypothesis can be accepted.  It is usual to denote this probability as β.  Clearly it is 
desirable to minimise such errors but reducing their probability requires more data 
(lengthening the test).  A compromise has to be achieved where acceptable error probabilities 
are obtained by an acceptable test. 

6.6 It is also common in R&M work to base the risks of error on different hypotheses.  A 
more satisfactory test is produced if two values are tested: an upper test value θ0 and a lower 
test value θ0.  The risk of reaching a reject conclusion when η is > θ0 is α and that of reaching 
an accept decision when η is < θ1 is β.  The ratio of θ1 to θ0 is then known as the 
discrimination ratio.  These concepts are more thoroughly explained in PtDCh10. 

6.7 Hypothesis tests can be planned before the data capture takes place (the above text is 
written on the basis of analysis after capture).  This is particularly relevant in R&M work for 
demonstrations.  The principles expressed above still apply but instead of producing an 
engineering conclusion of statistical correlation, or otherwise, the analyst will produce a test 
plan.  This plan will state: 

a) the form of data that is required to be captured and any relevant ‘sentencing’ rules; 

b) the hypotheses that are being tested and the associated risks of error in the result; 

c) the criteria under which the test will be terminated with an accept result; and  

d) the criteria under which the test will be terminated with a reject result. 

7 ESTIMATION OF THE MEAN AND VARIANCE 
OF ANY DISTRIBUTION 

7.1 Notation 

7.1.1 In this Chapter the following notation is adopted: 

Population Mean = μ 

Sample Mean = x  

Population Standard Deviation  = σ (variance σ2) 

Estimate of σ from sample = s  (variance estimate s2) 

Sample size = n 

Random variable = x  

ith x value = xI 

f(ηS) is the PDF associated with the estimator.  
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7.1.2 Estimating the mean (μ) 
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7.1.4 Estimating the variance (σ2) μ known. 

s
n

xi
i

n
2 2

1

1
= −

=
∑. ( )μ  

or 

s
n

x
n

x
n

x xi
i

n

i
i

n

i
i

n
2 2

1

2

1

2

1

21 2 1 2= − + = − +
= = =
∑ ∑ ∑. . . . . .μ μ μ μ  

8 ESTIMATION OF THE CONFIDENCE INTERVAL 

8.1 CI About x  

8.1.1 It is not possible to give a general expression for the CI about x  for any distribution. 
However, due to the Central Limit Theorem, it is possible to give approximate expressions in 
cases where n is sufficiently large.  The Central Limit Theorem will not be discussed here, 
except to say that, regardless of the distribution of x, it justifies approximating the distribution 
of x  by a Normal distribution with mean μ and variance σ2/n, where n is sample size and is 
fairly large. 

8.1.2 Thus x
n

− μ
σ

 is the Standard Normal Deviate ‘z’ when n is large; i.e. it is Normally 

distributed with mean zero and standard deviation 1. 

This section is not essential to support demonstrations and will be completed later. 

9 ESTIMATING PROBABILITY OF SUCCESS 

This section is not essential to support demonstrations and will be completed later. 
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10 ESTIMATING MTTF AND MTBF 

(A more detailed discussion of this topic is given in Ref. 2). 

10.1 Estimating MTTF (non-repairable systems) 

10.1.1  If a sample of n items are placed on test and the time to failure of each 
measured, then the estimated MTTF is: 

∑
=

n

1i
itn

1  

where ti is the time to failure of the ith item. 

10.1.2 Sometimes not all items in such a test fail, for example, if the test is time truncated.  
In these circumstances it is recommended that some attempt be made to estimate the 
parameters of the distribution of times to failure, then calculate the mean from this.  For 
example, Weibull analysis could be used.  The mean could then be estimated from the 
parameters of the distribution.  In general, however, an MTTF cannot be estimated for time 
truncated tests since the distribution of times to failure beyond the truncation time (T) is 
unknown.  Only if a distribution beyond T is assumed, can an MTTF be estimated. 

10.1.3 If the times to failure are known to be distributed in accordance with the negative 
exponential distribution, the MTTF can be estimated rigorously by summing all item 
operating time and dividing by the number of failures.  However, generally in such a test this 
cannot be assumed, and a Weibull analysis is recommended as preferable. 

10.2  CI About MTTF Estimate 

10.2.1 If times to failure are distributed exponentially the CI on the MTTF can be obtained 
as in para 10.4.1. 

10.2.2 Where all items are tested to failure, but the distribution is unknown, the Normal 
approximation can be used if the number of failures exceeds where the standard deviation ‘s’ 
has to be estimated from the sample and x  is MTTF as calculated in para. 10.1.1. 

10.2.3 If no all items fail, and the procedures suggested in para. 10.1.2 are adopted, the CI 
cannot easily be obtained. 

10.3 Estimating MTBF (repairable systems) 

10.3.1 Where trials are conducted, or service usage accumulated, on items which are 
repaired or replaced on failure, the MTBF of the item is assessed, as for MTTF, by dividing 
the accumulated active or operational time by the total number of failures.  Any time when 
the item is not active (e.g. due to repair, servicing, etc.) should not be included in the MTBF 
calculation. 

10.3.2 Thus if ti is the accumulated active time of the ith item, and there were n such items 
having experienced between them a total of r failures, then: 
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Estimated MTBF =
=
∑1

1r
ti

i

n

.   

10.3.3 The above estimate has most relevance when MTBF is not changing with time.  
(This does not necessarily mean times to failure should be negative exponentially distributed.)  
When the MTBF is changing, other estimation methods may be preferable, e.g. CUSUMs  or 
moving average plots, or plotting on the basis of some growth model such as Duane. 

10.3.4 When MTBF is being estimated from special trials, the trials may be completed 
either when a certain number of test hours are accumulated or when a certain number of 
failures are accumulated.  The above estimation is used in either case. 

10.4 CI on MTBF Estimate 

(The following is only valid when failures are occurring negative exponentially in time.) 

10.4.1 Failure Truncated Trials 

It is assumed that in this case the trials cease when the rth failure occurs, and that the 
accumulated active time is then T hours.  Thus: 

the point estimate of the MTBF ( ) = T/r $θ

The two-sided confidence limits for the 100(1-α)% Confidence Interval are given by: 
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where  is the value of Chi-square with y degrees of freedom, exceeded with probability 
x.  Values of Chi-square are tabulated in PtDCh3.  (These limits may be inverted to obtain the 
100(1-α)% CI on failure rate.) 

χ x y,
2

The one-sided confidence limit for 100(1-α)% is given by: 
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10.4.2 Time Truncated Tests 

It is assumed that in this case trials are terminated when the accumulated equipment running 
time reaches T.  Using the same notation as in para. 10.4.1, the 100(1-α)% CI on MTBF for a 
time truncated test is: 
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Calculations proceed in the same way as in para. 10.4.1 except that the lower confidence limit 
will be slightly different, since χ2 is computed using 2r+2 degrees of freedom, not 2r as 
previously. 

Note that in this case the lower confidence limit can be computed even if no failures occur. 

However, in the case of zero failures the one-sided 100(1-α)% lower confidence limit for the 
MTBF can be calculated exactly, without the use of χ2 tables, as: 

MTBF lower confidence limit = T

e− log ( )α
           (r = 0) 

Conversely, the upper confidence limit for the failure rate is the inverse of this, i.e.: 

Failure Rate upper confidence limit = 
− log ( )e

T
α

            (r = 0). 

In general, the one-sided confidence limit for 100(1-α)% is given by: 

$θ   ≥  2

1 2 2

2

T

rχ
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	5.3 In practice, for parameters such as MTBF, the 60% one-sided lower confidence limit is normally quoted.  This provides a value which errs to the ‘safe’ side of the median unbiased estimator without producing an unrealistically low value.

	6 SIGNIFICANCE OR HYPOTHESIS TESTING
	6.1 Hypothesis testing links theoretically derived values for performance parameters to the real world and practical results.  It enables a comparison to be made between theoretical estimates or specification values and practical experience.  For example, an analyst may have a hypothesis for the value of (.  This may arise from:
	6.2 To perform a significance test the analyst simply examines whether ( lies in the (% CI (L to (U.  If it does, he can say that “(S is not statistically significantly different from ( at the (100-()% level of significance”.  This means that the sample data are not inconsistent with the hypothesis that they were drawn from a population in which the parameter of interest had the value (.  (Note that this should not be interpreted as a ‘proof’ that the original hypothesis is true.)  If ( lies outside the range (L to (U then (S is significantly difference from ( and one can say that if the population parameter were (, then the probability of drawing the observed sample is less than (100-()%.
	6.3 A common error in using significance tests is to use them in situations where one has no prior hypothesis.  Analysts are particularly prone to test whether (S is statistically significantly different from zero, and if this is not so, to simplify the analysis by assuming that they have shown that it is reasonable to take ( as zero and proceed on that basis.  If there are no a priori grounds for believing ( to be zero, then there is no reason to take ( as zero in preference to any other value in the CI.  ‘Zero’ may only be in the CI because the CI is wide.  In fact, the best value to take is (S.  The point to remember is that ‘not statistically significantly different from’ does not mean ‘negligibly different from’ or ‘very near’.  A statistically non-significant difference may have considerable practical significance.
	6.4 Where significance tests are used repeatedly, for example in lot sampling in a production process, it must be recognised that failures to pass the test will occur from time to time simply due to statistical variation, and that this can occur surprisingly quickly in repeated tests.  For example, if an event has a probability of occurrence of 1 in 20, there is a probability of 30% of it occurring at least once in 7 opportunities.
	6.5 There are two types of error that can occur in hypothesis testing.  First the hypothesis can be rejected when it is true.  The probability of this error is usually denoted by (.  Second a false hypothesis can be accepted.  It is usual to denote this probability as (.  Clearly it is desirable to minimise such errors but reducing their probability requires more data (lengthening the test).  A compromise has to be achieved where acceptable error probabilities are obtained by an acceptable test.
	6.6 It is also common in R&M work to base the risks of error on different hypotheses.  A more satisfactory test is produced if two values are tested: an upper test value (0 and a lower test value (0.  The risk of reaching a reject conclusion when ( is > (0 is ( and that of reaching an accept decision when ( is < (1 is (.  The ratio of (1 to (0 is then known as the discrimination ratio.  These concepts are more thoroughly explained in PtDCh10.
	6.7 Hypothesis tests can be planned before the data capture takes place (the above text is written on the basis of analysis after capture).  This is particularly relevant in R&M work for demonstrations.  The principles expressed above still apply but instead of producing an engineering conclusion of statistical correlation, or otherwise, the analyst will produce a test plan.  This plan will state:

	7 ESTIMATION OF THE MEAN AND VARIANCEOF ANY DISTRIBUTION
	7.1 Notation
	7.1.1 In this Chapter the following notation is adopted:
	7.1.2 Estimating the mean (()
	7.1.3 Estimating the variance ((2) with ( not known
	7.1.4 Estimating the variance ((2) ( known.


	8 ESTIMATION OF THE CONFIDENCE INTERVAL
	8.1 CI About 
	8.1.1 It is not possible to give a general expression for the CI about  for any distribution. However, due to the Central Limit Theorem, it is possible to give approximate expressions in cases where n is sufficiently large.  The Central Limit Theorem will not be discussed here, except to say that, regardless of the distribution of x, it justifies approximating the distribution of  by a Normal distribution with mean ( and variance (2/n, where n is sample size and is fairly large.
	8.1.2 Thus  is the Standard Normal Deviate ‘z’ when n is large; i.e. it is Normally distributed with mean zero and standard deviation 1.


	9 ESTIMATING PROBABILITY OF SUCCESS
	10 ESTIMATING MTTF AND MTBF
	10.1 Estimating MTTF (non-repairable systems)
	10.1.1  If a sample of n items are placed on test and the time to failure of each measured, then the estimated MTTF is:
	10.1.2 Sometimes not all items in such a test fail, for example, if the test is time truncated.  In these circumstances it is recommended that some attempt be made to estimate the parameters of the distribution of times to failure, then calculate the mean from this.  For example, Weibull analysis could be used.  The mean could then be estimated from the parameters of the distribution.  In general, however, an MTTF cannot be estimated for time truncated tests since the distribution of times to failure beyond the truncation time (T) is unknown.  Only if a distribution beyond T is assumed, can an MTTF be estimated.
	10.1.3 If the times to failure are known to be distributed in accordance with the negative exponential distribution, the MTTF can be estimated rigorously by summing all item operating time and dividing by the number of failures.  However, generally in such a test this cannot be assumed, and a Weibull analysis is recommended as preferable.

	10.2  CI About MTTF Estimate
	10.2.1 If times to failure are distributed exponentially the CI on the MTTF can be obtained as in para 10.4.1.
	10.2.2 Where all items are tested to failure, but the distribution is unknown, the Normal approximation can be used if the number of failures exceeds where the standard deviation ‘s’ has to be estimated from the sample and  is MTTF as calculated in para. 10.1.1.
	10.2.3 If no all items fail, and the procedures suggested in para. 10.1.2 are adopted, the CI cannot easily be obtained.

	10.3 Estimating MTBF (repairable systems)
	10.3.1 Where trials are conducted, or service usage accumulated, on items which are repaired or replaced on failure, the MTBF of the item is assessed, as for MTTF, by dividing the accumulated active or operational time by the total number of failures.  Any time when the item is not active (e.g. due to repair, servicing, etc.) should not be included in the MTBF calculation.
	10.3.2 Thus if ti is the accumulated active time of the ith item, and there were n such items having experienced between them a total of r failures, then:
	10.3.3 The above estimate has most relevance when MTBF is not changing with time.  (This does not necessarily mean times to failure should be negative exponentially distributed.)  When the MTBF is changing, other estimation methods may be preferable, e.g. CUSUMs  or moving average plots, or plotting on the basis of some growth model such as Duane.
	10.3.4 When MTBF is being estimated from special trials, the trials may be completed either when a certain number of test hours are accumulated or when a certain number of failures are accumulated.  The above estimation is used in either case.

	10.4 CI on MTBF Estimate
	10.4.1 Failure Truncated Trials
	10.4.2 Time Truncated Tests



