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1 SIMULATION AND ANALYTIC MODELS 

1.1 Analytic means exist for performing calculations using RBDs, but these calculations 
are only valid under certain restrictive assumptions such as independence of the blocks, no 
queuing for repair, etc. There are a number of modelling techniques which may be used to 
overcome these restrictions, and two such techniques are Markov analysis (see PtDCh38) and 
simulation, which is the subject of this Chapter. 

1.2 Reliability models, by the nature of the process that they represent, have a significant 
probabilistic content. These processes usually involve the combination of two or more input 
random variables to produce output random variables. There are two approaches to the 
solution of these problems; one using analytical methods and the other using a technique 
called Monte-Carlo simulation. 

1.3 In the analytical method, the probability distributions associated with the output 
random variables are calculated from the probability distributions associated with the input 
variables. In Monte-Carlo simulation, the value of a distributed parameter is selected by the 
generation of a random number, with the probability of a given value being determined by 
the association of random numbers to that variable. By repeating this process a large number 
of times, a picture of the distribution of the output random variable may be built up, from 
which estimates of the parameters of interest may be calculated, e.g. their mean, standard 
deviations, etc. A more detailed explanation of the Monte-Carlo simulation method, together 
with worked examples is given by Jones2.  

1.4 The two modelling methods are best explained by means of an example. Consider two 
items connected in series which have constant failure rates  and . The times to failure of 
individual items are governed by the negative exponential distribution with the probability 
density function (pdf) , see PtDCh3. It can be shown by analytical methods (see 
PtDCh3) that the failure time distribution of the system comprising two items is also a 
negative exponential and the failure rate of the system is given by 
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1.5 However, the system MTBF can also be estimated using Monte-Carlo simulation 
methods. A time is sampled from each failure time distribution for both elements, say T1 and 
T2. (Tocher1 describes methods of how this can be performed in practice). The failure time of 
the system (TS) is given in this case by ( )T,Tmin 21ST = . By performing these operations a 
large number of times, the distribution of TS is obtained and an estimate of the system MTTF 
is given by the mean of the sample values TS. 

2 COMPARISON OF METHODS 

2.1 Each technique has it advantages and disadvantages; the main ones are listed in 
Table 1. Broadly, for complex systems that may be subject to change later, the Monte-Carlo 
method is preferred because of its flexibility. For simpler systems, or studies to get a ‘feel’ 
for a problem, analytical methods may suffice. 
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2.2 The decision as to whether the modeller should use analytical (e.g. deterministic 
equations) or simulation (i.e. Monte-Carlo) methods may be influenced by the following 
factors: 

a) Complexity.  Simulation often gives better physical visibility of a complex system 
analysis than a set of equations, aiding interpretation of the output. 

b) Scope.  For example, complex repair policies are easier to deal with in simulations 
than analytical models. 

c) Accuracy.  Although analytical models are deterministic, they usually involve 
simplifying assumptions to make the model analytically tractable. Such 
assumptions have to be justified. 

d) Future development.  If a model is likely to be further refined ad developed, an 
initial model that may be initially tractable analytically may not be so when further 
development requirements are placed. A simulation model may therefore be 
appropriate from the start. 

e) Application.  For quick look analysis, analytical models may be preferred, because 
of their speed of execution. The repeated running involved in Monte-Carlo 
simulation can cause long execution times before estimates of system parameters 
of interest are obtained. 
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 Simulation Method 

Analytical Monte-Carlo 

a. Gives exact results (given the 
assumptions of the model). 

a. Very flexible. There is 
virtually no limit to the analysis. 
Empirical distributions can be 
handled. 

b. Once the model is developed, 
output will generally be rapidly 
obtained. 

b. Can generally be easily 
extended and developed as required. A
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c. It need not always be 
implemented on a computer – paper 
analyses may suffice. 

c. Easily understood by non-
mathematicians. 

a. Generally requires restrictive 
assumptions to make the problem 
tractable. 

a. Usually requires a computer. 

b. Because of a. it is less flexible 
than Monte-Carlo. In particular, the 
scope for extending or developing a 
model may be limited. 

b. Calculations can take much 
longer than analytical models. 
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c. The model might only be 
understood by mathematicians. This 
may cause credibility problems if 
output conflicts with preconceived 
ideas of designers or management. 

c. Solutions are not exact, but 
depend on the number of repeated 
runs used to produce the output 
statistics. That is, all outputs are 
estimates. 

Table 1: Main Advantages and Disadvantages of Analytical and Monte-Carlo 
Simulation Models 

3 STATISTICAL ACCURACY OF RESULTS 

3.1 The Monte-Carlo simulation method is a type of sampling procedure, thus any output 
is not exact but a statistical estimate whose accuracy depends on the number of missions or 
failures generated. For example if mission parameters are of prime important (e.g. probability 
of mission survival failure free) then the number of missions to be simulated is the important 
parameter. The number of system failures generated is not necessarily important, e.g. if in 
1000 mission simulated only 5 system failures are generated, mission reliability is none the 
less reasonably well established. However, if MTBF estimates are the prime consideration 
then a sufficient number of system failures must be simulated to yield the desired accuracy. 

3.2 In the output of system R&M statistics derived from Monte-Carlo simulation models, 
confidence intervals are normally provided to indicate the accuracy of the parametric 
estimates. 
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3.3 The mathematics of selecting simulation parameters and deriving the confidence 
intervals is the same as that for reliability and Maintainability demonstrations, see PtCCh40 
and PtCCh41. 

4 HIGH RELIABILITY SYSTEMS 

4.1 It is possible for simulation results to show widely different values for the same 
model when simulated with different random number seeds, or for the value of a parameter to 
be different compared with an estimate calculated analytically. Invariably, this situation 
arises with high reliability systems, simulated for relatively short mission times in which few 
system failures are generated. 

4.2 For example, a system MTBF reported by an analysis program as 176 hours is a point 
estimate of the true population mean of times between failures. The accuracy of this figure, or 
its closeness to the true mean is indicated by the 95% confidence limits (CL) given by the 
program, and these should always be considered together with the mean. Hence a value of 
176 with CLL = 169 and CLU = 183 (Confidence Interval = 14) is a better estimate of the true 
mean than 178 with CLL = 149 and CLU = 207 (Confidence Interval = 58). 

4.3 As an example of what can happen with high reliability systems, let us look at a 
thingy modelled by a user who was particularly interested in system MTBF. She was looking 
at a 75-day mission so, quite reasonably, she set the mission time to 1800 hours, and ran for 
5000 missions. The results were: 

 
                    System Reliability Results 
                    -------------------------- 
                    Missions Simulated                  5000 
                    Mission Time Simulated              1800.00 
                    Failure Free Missions               4988 
                    Total System Failures Recorded        12 
        Lower          Upper 
  Estimate       95% C.L.       95% C.L. 
MTBF    749999.        457261.      1.451518E+06 
MTFF    749029.        456669.      1.449640E+06 
AVAILABILITY  99.9999        99.9999        100.000 

4.4 Only 12 system failures were generated, which resulted in a 95% CI around a mean of 
750,000 of nearly 1 x 106. This was clearly a very bad estimate but it indicated a true MTBF 
that far exceeded the mission time and probably lay somewhere beyond 1 million hours. If 
the user was still grimly determined to get an MTBF figure for this ultra-reliable system she 
could have increased the mission time to, say, 1 x 106 hours, which would have given the 
following results: 
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                    System Reliability Results 
                    -------------------------- 
                    Missions Simulated                  1000 
                    Mission Time Simulated           1000000.00 
                    Failure Free Missions                518 
                    Total System Failures Recorded       628 
        Lower          Upper 
  Estimate       95% C.L.        95% C.L. 
MTBF  1.592356E+06   1.497259E+06    1.687454E+06 
MTFF  1.518071E+06   1.418889E+06    1.617253E+06 
AVAILABILITY  100.000        100.000         100.000 

4.5 A value for MTBF of 1.59 x 106 is now a better estimate because the confidence 
interval has been reduced by a factor of 10. 

4.6 Clearly, when estimating MTBF for high reliability systems i.e. those with a high 
MTBF compared with typical operating times, it is necessary to generate enough system 
failures to achieve close confidence limits around the calculated mean. Therefore, real life 
operating times must be disregarded and the mission parameters chosen to ensure that enough 
system failures are generated. 
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