CHAPTER 3

STATISTICAL DISTRIBUTIONS

CONTENTS

page
1 INTRODUCTION 2
2 DEFINITIONS AND CONCEPTS 2
3 BINOMIAL DISTRIBUTION 7
4 NEGATIVE EXPONENTIAL DISTRIBUTION 9
5 NORMAL DISTRIBUTION 11
6 LOG-NORMAL DISTRIBUTION 13
7 CHI-SQUARED DISTRIBUTION 14
8 POISSON DISTRIBUTION 15
9 WEIBULL DISTRIBUTION 17

1 INTRODUCTION

1.1 R\&M parameters are statistical in nature. Although they are very much equipment performance parameters they address the performance over a long period. Actual failures will occur at random and repair times will show a spread. Understanding the distribution of these random events and variations is important in engineering practical solutions to operational problems. This requires an understanding of the relevant statistical distributions.
1.2 This Chapter introduces the statistical concepts, definitions and distributions that are most relevant to R\&M activities. Where appropriate it comments on the aspects of R\&M to which specific distributions apply.
1.3 The application to real world data is not considered here. Activities such as distribution Paramenter Estimation, Confidence Intervals, Goodness of Fit Testing and Hypothesis Testing provide such a connection and are addressed in Pt4 Ch11.

2 DEFINITIONS AND CONCEPTS

2.1 Random Variable, Population and Sample

2.1.1 The subject of statistics is concerned with the characteristics of a set of things or events. The complete set is termed the population. The parameter which is chosen to characterise or describe the individual elements of the set is called the random variable (designated ' x ' hereafter). Normally it will not be possible to measure x for the every element of the set when it is desired to characterise a population. It is therefore common to estimate the characteristics of a population by measuring the x values of a sample.
2.1.2 There are two types of random variable: a continuous random variable and a discrete random variable. Continuous variables can take any value between the lower and upper limits (all real values of x in the range are possible, x is 'infinitely dense'). Measurements such as length, duration, current, etc are continuous variables. Discrete variables can only take specific values (normally integers). Examples include the number of goals scored in a football match or the value of cash carried by a person.
2.1.3 It is important that samples be representative of the whole population. Suppose, for example, one were interested in the height of adult males in the UK. In this case, the random variable is 'height'. One would not need to measure the whole population to obtain a good estimate of, for instance, the average height - a sample would be sufficient. However, the sample would have to be drawn from all over the UK to allow for regional differences and from carefully chosen age, ethnic and social samples. In a similar way, it is necessary, when measuring the attributes of a system or type of equipment, to ensure that the sample is of sufficient size and distribution to be adequately representative of the population.

2.2 Concept of Distribution

2.2.1 As indicated by the name, a random variable may generally take values over a range; i.e. it is distributed over the range. In some parts of the range the variable occurs more
frequently than in others. That is, its probability of occurrence varies over the range. The manner in which this probability varies over the range characterises the distribution of the random variable.

2.3 PDF and CDF for continuous random variables

2.3.1 Two functions are used to describe a distribution: its Probability Density Function (PDF) and its Cumulative Distribution Function (CDF). They are different forms of the same function.

Figure 1: $\operatorname{PDF}[\mathrm{f}(\mathrm{x})]$ and $\mathrm{CDF}[\mathrm{F}(\mathrm{x})]$ for a continuous variable
2.3.2 Figure 1 shows the PDF and CDF for a continuous random variable x . The usual notation for these functions is $f(x)$ and $F(x)$ respectively. The PDF is defined such that the area under the PDF between x_{1} and x_{2} is equal to the probability that a random observation x lies in the interval x_{1} to x_{2}. Put mathematically:

$$
P_{\left(x \text { lies between } x_{1} \text { and } x_{2}\right)}=\int_{x_{1}}^{x_{2}} f(x) d x
$$

2.3.3 Suppose that the population range of the random variable is x_{L} to x_{U} (negative infinity, zero, positive infinity or any other value is valid). It is certain (probability $=1$) that x lies between x_{L} and x_{U}. Therefore the area under $\mathrm{f}(\mathrm{x})$ between these limits is equal to unity:

$$
\int_{x_{L}}^{x_{U}} f(x) d x=1
$$

2.3.4 A common error made concerning PDFs is the notion that $f(x)$ is the probability of the exact value x occurring. This is not true for a continuous variable; it is necessary to associate the PDF with an interval to obtain a probability of occurrence. The probability of any particular value of x occurring is zero when x ranges over a continuum because there are an
infinite number of possible values of x. For continuous distributions, $f(x)$ is not a probability at all and may exceed 1 .
2.3.5 A parameter which is frequently required is the probability that an observation will be less (or greater) than some specified value, x_{i} say. From the definition of $f(x)$ above, it can be seen that this probability is the area under $\mathrm{f}(\mathrm{x})$ to the left (or right) of x_{i}. Put mathematically:

$$
\begin{aligned}
& P_{\left(x<x_{i}\right)}=\int_{x_{L}}^{x_{i}} f(x) d x \\
& P_{\left(x>x_{i}\right)}=\int_{x_{i}}^{x_{U}} f(x) d x
\end{aligned}
$$

2.3.6 $\mathrm{P}\left(\mathrm{x}^{2}<\mathrm{x}_{\mathrm{i}}\right)$ is called the cumulative distribution function and is generally designated $\mathrm{F}(\mathrm{x})$. It is shown in Figure 1 related to its equivalent PDF. $\mathrm{F}(\mathrm{x})$ increases from 0 to 1 as x increases from x_{L} to x_{U}.

2.4 PDF and CDF for discrete random variables

Figure 2: $\operatorname{PDF}[\mathrm{f}(\mathrm{x})]$ and $\mathrm{CDF}[\mathrm{F}(\mathrm{x})]$ for a discrete variable
2.4.1 The concepts of PDF and CDF apply to discrete random variables as well as continuous random variables. Figure 2 shows a discrete distribution. Each valid x value has a value for $f(x)$ and $F(x)$ but the values in between do not. Unlike distributions of continuous random variables, for discrete random variables it is true to say that $f(x)$ represents the probability of that specific value occurring.
2.4.2 It is also true to say that the sum of $f(x)$ for all valid values of x is unity.

$$
\sum_{-\infty}^{\infty} f(x) d x=1
$$

For most discrete variables x cannot be negative. Therefore zero can normally be substituted for minus infinity in the equation.

2.5 Mean, Median, Mode, Variance and Quantiles

2.5.1 The mean value () of a distribution is the arithmetic average of the population variable. For a population of size N:

$$
\mu=\frac{1}{\mathrm{~N}} \sum_{1}^{\mathrm{N}} \mathrm{x}_{\mathrm{j}}
$$

For a distribution with $\operatorname{PDF}=\mathrm{f}(\mathrm{x})$:

$$
\mu=\sum_{x_{L}}^{x_{U}} x . f(x) \cdot d x
$$

A mechanical analogy is that the mean occurs at the 'centre of gravity' along the x axis of the area under the PDF. The population mean is often designated by μ, and a sample mean by $\overline{\mathrm{x}}$.
2.5.2 The median value of a distribution is that value of x for which 50% of the population is higher, 50% lower. It is often designated x_{m}. Note that:

$$
\mathrm{F}\left(\mathrm{x}_{\mathrm{m}}\right)=0.5
$$

i.e. the areas either side of x_{m} in the PDF figure are equal.
2.5.3 A mode of a distribution is a peak value of the PDF. In general, it indicates a local region of the range where observations occur most frequently. A distribution may have more than one mode, but this is not the case for the more common analytical distributions introduced in this Chapter.
2.5.4 The mean, median and mode only coincide when the PDF is symmetrical and unimodal, e.g. the Normal Distribution. They will not coincide when the distribution is skewed.
2.5.5 The variance of a distribution measures the degree of dispersion of the variable about the mean. When the variance is small, the PDF is tall and thin; when large, the PDF is low and wide. Note that variance is not really associated with range; for example, the Normal Distribution has a range from $-\infty$ to $+\infty$, but the variance of a particular Normal Distribution could take any value. Variance (denoted by ${ }^{2}$) is computed as:

$$
\sigma^{2}=\frac{1}{N} \sum_{1}^{N}\left(x_{j}-\mu\right)^{2}
$$

for a Population of N things with mean μ. That is, it is the average value of the square of the deviations from the mean. In terms of PDF:

$$
\sigma^{2}=\sum_{x_{\mathrm{L}}}^{x_{\mathrm{U}}}\left(\mathrm{x}_{\mathrm{j}}-\mu\right)^{2} \cdot \mathrm{f}(\mathrm{x}) \cdot \mathrm{dx}
$$

2.5.6 An alternative measure of dispersion is the standard deviation (denoted by) which is the square root of variance.
2.5.7 The y quantile (or fractile) is the value of the random variable for which the cumulative distribution function equals $\mathrm{y}(0 \leq \mathrm{y} \leq 1)$ or "jumps" from a value less than y to a value greater than y. If the cumulative distribution function equals y throughout an interval between two consecutive values of the random variable, then any value in this interval may be consider as the p quartile. The y quartile is often designated x_{y}.

$$
F\left(x_{y}\right)=y / 100
$$

i.e. $\mathrm{y} \%$ of the area in the PDF figure lies to the left of x_{y}.
x_{50} is the median, x_{25} the lower quartile, x_{75} the upper quartile, x_{90} the 90% decile, etc.
2.5.8 A percentile is defined in a corresponding manner to a quantile but with y expressed as a percentage. This leads to the common designations:

- x_{50} for the median
- x_{25} the lower quartile
- x_{75} the lower quartile
2.5.9 Quantiles and percentiles are often used in defining a maximum parameter. For example when defining the acceptable repair time, the maximum time is often relevant. However there is no true maximum to the distribution as the tail of the PDF tends asymptotically to zero. Specifying the 90th or 95 th percentile provides a good solution.

3 BINOMIAL DISTRIBUTION

3.1 Nature

3.1.1 The Binomial Distribution is a discrete distribution that describes the distribution of the number of successes in n independent trials, where the probability of success at each trial is p .

For $\mathrm{n}=1 \quad$ the probability of 1 success is p and the probability of failure (q) is 1-p

For $n=2 \quad$ the probability of 2 successes is p^{2}
the probability of 1 success and 1 failure is $2 \mathrm{p} . \mathrm{q}$
and the probability of 2 failures q^{2}
In general the probability of x successes in n trials is ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{x}} \cdot \mathrm{p}^{\mathrm{x}} \cdot \mathrm{q}^{(\mathrm{n}-\mathrm{x})}$
3.1.2 The PDF, $f(x)$, is the probability of obtaining exactly x successes in n trials $(0 \leq x \leq n, x$ and n integer).
3.1.3 The CDF, $\mathrm{F}(\mathrm{x})$, is the probability of obtaining x or less (no more than x) successes in n trials $(0 \leq x \leq n, x$ and n integer).

3.2 Application

3.2.1 The Binomial Distribution is generally applicable where the a system is put through a number of independent trials, provided that the outcome of each trial is success or failure and the probability of success is constant. It is fundamental to many types of acceptance sampling scheme in which the decision to accept or reject a batch is made on the basis of the number of defective items in a sample.
3.2.2 A simple example is the tossing of a coin 10 times. The probability of it landing head up on each individual trial (p) is 0.5 . The probability of it landing head up every time is p^{n} $\left(0.5^{10} \approx 0.001\right)$. The probability of it landing tail up once and head up 9 times is ${ }_{10} \mathrm{C}_{9} \cdot \mathrm{p}^{9} \cdot \mathrm{q}^{1}$ (${ }_{10} \mathrm{C} 9 \cdot 0.5^{9} \cdot 0.5^{1} \approx 0.0097$), etc. Exactly the same figures would apply to the firing of 10 missiles and their exploding on target, if the Reliability of each missile to reach the target and explode is 0.5 .
3.2.3 The situation is similar when maintaining equipment. If the 90% decile of maintenance task times for an item is 1 hour, then in any random sample of 5 tasks, the probability of all 5 tasks being completed in 1 hour each is ${ }_{5} \mathrm{C}_{5} \cdot 0.9^{5} \cdot 0.1^{0}(=0.59)$. The probability that 4 tasks are each completed in 1 hour and 1 takes longer is ${ }_{5} \mathrm{C}_{4} \cdot 0 \cdot 9^{4} \cdot 0 \cdot 1^{1}$ (= 0.33), etc.

3.3 Details

Figure 3: PDF and CDF for the Binomial Distribution

PDF: $f(x)={ }_{n} C_{x} p^{x} q^{(n-x)}$
CDF: $F(x)=\sum_{0}^{\mathrm{x}}{ }_{\mathrm{n}} \mathrm{C}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{q}^{(\mathrm{n}-\mathrm{i})}$
mean: $\mu=$ n.p
median: x where $\mathrm{F}(\mathrm{x})=0.5$
variance: $\sigma^{2}=$ n.p.q

Note: $\quad{ }_{n} C_{i}=\frac{n!}{i!.(n-i)!}$
$\mathrm{n}!=\mathrm{n} .(\mathrm{n}-1) .(\mathrm{n}-2) \ldots 2.1$
$0!=1$
mode: x where $\mathrm{f}(\mathrm{x}-1) \leq \mathrm{f}(\mathrm{x}) \geq \mathrm{f}(\mathrm{x}+1)$
standard deviation: $\sigma=\sqrt{\mathrm{n} . \mathrm{p} \cdot \mathrm{q}}$
For n.p and n.q both > 5, the Binomial distribution approximates to a Normal Distribution with $\mu=$ n.p and $\sigma=\sqrt{\text { n.p.q. }}$.

4 NEGATIVE EXPONENTIAL DISTRIBUTION

4.1 Nature

4.1.1 Negative exponential decay describes the natural decay of a parameter. It is based on the constant e (the base of natural logarithms) and a drain on that parameter at rate that is a constant proportion of the value of that parameter.
4.1.2 This decay becomes a distribution when applied to parameters, such as reliability, and the standard distribution descriptors can be applied.

4.2 Application

4.2.1 The voltage on a capacitor (of capacitance C) connected across a resistor (of resistance R) decays exponentially. If the voltage is V_{0} at time t_{0} then the Voltage V_{1} at time t_{1} is given by:

$$
V_{1}=V_{0} e^{\frac{-\left(t_{1}-t_{0}\right)}{R C}}
$$

4.2.2 Reliability (that is the probability of equipment not having failed) behaves in a similar way with respect to time (when the failure rate is constant):

$$
\mathrm{R}=\mathrm{e}^{-\lambda \mathrm{t}}
$$

where λ is the constant failure rate and t is the time since the last time at which the equipment was known not to be in a failed state $(\mathrm{R}=1$ when $\mathrm{t}=0$). The Reliability of an item of equipment decays exponentially with time until it is tested. Providing that the test is satisfactory, the Reliability returns to 1 and the decay begins again. If a number of trials are performed where such items are left for various periods of time and then tested then the distribution of the results will follow the negative exponential distribution.

4.3 Details

$$
\begin{array}{lr}
\text { PDF: } \mathrm{f}(\mathrm{x})=\lambda \mathrm{e}^{-\lambda \mathrm{x}} & (\lambda \text { is a constant }>0, \mathrm{x} \geq 0) \\
\text { CDF: } \mathrm{F}(\mathrm{x})=1-\mathrm{e}^{-\lambda \mathrm{x}} & \\
\text { mean: } \mu=1 / \lambda & \text { median: } \mathrm{x}=\left(\log _{\mathrm{e}} 2\right) / \lambda \\
\text { mode: } 0 & \\
\text { variance: } 1 / \lambda^{2} & \text { standard deviation: } \sigma=1 / \lambda
\end{array}
$$

Chapter 3
Statistical Distributions

Figure 4: PDF and CDF for the negative exponential distribution

5 NORMAL DISTRIBUTION

5.1 Nature

5.1.1 The Normal ${ }^{*}$ distribution is a continuous distribution given by the equation for its PDF (see subsection 5.3 for an explanation of the symbols):

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

5.1.2 With a continuous distribution, it is the area under the curve that is meaningful. However there is no simple formula for the CDF. It is possible to convert the PDF expression to a series, integrate each significant term and sum the results (feasible using modern computer-based spreadsheets) but not necessary. The same modern computer spreadsheets generally offer functions which return the value of the CDF for a given value of x .
5.1.3 The CDF is commonly provided in tables based on the standard normal distribution. This is a normal distribution with a mean of zero and standard deviation of unity (see Table 1). For any normally distributed variable, x, the transformation $z=\frac{x-\mu}{\sigma}$ yields a variable, z , which relates to the standard normal distribution. z is called the standard normal deviate.
5.1.4 Alternatively, an approximation to the CDF, adequate for reliability work, can be gained from the expression:

$$
\mathrm{F}(\mathrm{z}) \approx \frac{1}{1+\mathrm{e}^{-\mathrm{kz}}} \quad \text { where } \mathrm{k}=\sqrt{\frac{8}{\pi}} \text { and } \mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma}
$$

5.2 Application

5.2.1 The Normal distribution describes the variability in many production processes and engineering characteristics, e.g. resistor, capacitor and inductance values, dimensional values, etc. It is sometimes used to describe the distribution of times to wear out.
5.2.2 If a random variable, x, is the result of summing many (usually 10 or more is recommended) other random variables, that are not highly inter-dependent, then it can be shown that the distribution of x approximates to the normal distribution. This result is known as the Central Limit Theorem.

5.3 Details

[^0]PDF: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad(-\infty<x<+\infty)$
CDF: No analytical expression (but see 5.1.2 to 5.1.4).
mean: μ
median: μ
mode: μ
variance: σ^{2}
standard deviation: σ

Figure 5: PDF and CDF of a normal distribution

6 LOG-NORMAL DISTRIBUTION

6.1 Nature

6.1.1 If the natural logarithm of the variable $\mathrm{x}[\ln (\mathrm{x})]$ is normally distributed, then x forms a log-normal distribution $(x>0)$. The log-normal distribution is defined by the parameters x_{50} (the median) and σ_{e} (the standard deviation of the natural logarithm of x).

6.2 Application

6.2.1 Many repair time distributions closely approximate to the Log-Normal distribution . It has been found empirically that, regardless of the value of x_{m}, for active repair times σ_{e} lies generally in the range 0.6 to 1.4 , the lower values being associated with modular repair policies, the higher with detailed diagnosis and repair to component level. The Log-Normal distribution is also sometimes used to describe times to failure of equipment experiencing wear out.

6.3 Details

PDF: $f(x)=\frac{1}{x \sigma_{e} \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{\ln \left(x / x_{50}\right)}{\sigma_{e}}\right)^{2}}$
CDF: No simple algebraic expression exists for $\mathrm{F}(\mathrm{x})$

$$
\begin{array}{ll}
\text { mean: } \mu=\mathrm{x}_{50} \cdot \mathrm{e}^{\frac{\sigma_{e}^{2}}{2}} & \text { median: } \mathrm{x}_{50} \text { is a parameter of the distribution } \\
\text { mode: }=\mathrm{x}_{50} \cdot \mathrm{e}^{\sigma_{e}^{2}} & \text { variance: }=\mathrm{x}_{50}^{2} \cdot \mathrm{e}^{\sigma_{e}^{2}} \cdot\left(\mathrm{e}^{\sigma_{\mathrm{e}}^{2}}-1\right)
\end{array}
$$

standard deviation: σ_{e} is a parameter of the distribution

Figure 6: PDF and CDF of a log-normal distribution

7 CHI-SQUARED DISTRIBUTION

7.1 Nature

7.1.1 The χ^{2} distribution is a distribution of a continuously random variable, χ^{2}, with a range from 0 to ∞, and a PDF as listed in section 7.3.
7.1.2 The sum of the squares of n independent standardised normal variables is a χ^{2} random variable with parameter n . n is then called the degrees of freedom.

7.2 Application

7.2.1 The χ^{2} distribution is used in goodness of fit tests and the derivation of confidence intervals. Both of these are addressed in Pt4 Ch7.

7.3 Details

PDF: $f\left(\chi^{2}, \mathrm{n}\right)=\frac{\left(\chi^{2}\right)^{\left(\frac{\mathrm{n}}{2}-1\right)}}{2^{\frac{\mathrm{n}}{2}} \cdot \Gamma(\mathrm{n} / 2)} \cdot \mathrm{e}^{-\frac{\chi^{2}}{2}}$ where the Gamma function $\Gamma(\mathrm{m})=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}} \cdot \mathrm{x}^{\mathrm{m}-1} \cdot \mathrm{dx}$
CDF: $F\left(\chi^{2}, n\right)=\frac{1}{2^{\frac{v}{2}} \Gamma\left(\frac{v}{2}\right)} \cdot x \cdot \int_{0}^{x} u^{\left(\frac{n}{2}-1\right)} \cdot e^{-\frac{u}{2}} \cdot d u$
mean: $\mu=n$ variance: $\sigma=2 \mathrm{n}$

Figure 7: PDF and CDF for the χ^{2} distribution

8 POISSON DISTRIBUTION

8.1 Nature

8.1.1 The Poisson Distribution is a discrete distribution in which x may take any positive integer value including zero. The PDF describes the probability of obtaining exactly x events when the expected (or mean) number of events is μ (μ need not be an integer).

8.2 Application

8.2.1 The Poisson Distribution can be applicable where the expected number of events in a given time is known and the total number in that time is unlimited.
8.2.2 For an item of equipment with constant failure rate λ, the Poisson Distribution models the potential number of failures in a given time, t. The expected number of failures, μ, is equal to λt. Inserting this value into the equation for PDF and solving for $\mathrm{x}=0,1,2$, etc provides a list of probabilities which relate to $0,1,2$, etc failures occurring in time t. Such a model is useful in logistics planning where it will show how often there will be no repair work required and how often the planned resource will be overloaded.

8.3 Details

$$
\begin{array}{ll}
\text { PDF: } f(x)=\frac{\mu^{x}}{x!} \cdot e^{-x} & \text { for } x=0,1,2,3, \ldots, \infty \\
\text { CDF: } F(x)=\sum_{i=0}^{x} \frac{\mu \mathrm{i}}{i!} \cdot \mathrm{e}^{-\mathrm{i}} & \text { where } \mathrm{i}!=i .(i-1) .(\mathrm{i}-2) \text {.(2).(1) and } 0!=1
\end{array}
$$

mean: μ
mode: occurs when x is the largest integer less than μ
variance: μ
standard deviation: $\sigma=\sqrt{\mu}$
For $\mu>9$ the Poisson distribution may be approximated by a Normal distribution with mean μ and variance μ.

Chapter 3
Statistical Distributions

Figure 8: PDF and CDF for a Poisson Distribution

9 WEIBULL DISTRIBUTION

9.1 Nature

9.1.1 The Weibull distribution is a continuous distribution of wide generality. The Negative Exponential distribution is a special case of the Weibull.

9.2 Application

9.2.1 The Weibull distribution is of wide applicability in failure rate $(\lambda(t))$ analysis. It copes with the analysis of situations in which the failure rate is not constant. In the standard notation:

$$
\lambda(\mathrm{t})=\frac{\beta \cdot \mathrm{t}^{(\beta-1)}}{\eta^{\beta}}
$$

and cumulative (cumulative $\lambda(\mathrm{t})$ means average failure rate between 0 and t)

$$
\lambda(\mathrm{t})=\left(\frac{\mathrm{t}}{\eta}\right)^{\beta}
$$

The survival function $(R(t))$ is also a simple expression, namely:

$$
\mathrm{R}(\mathrm{t})=\mathrm{e}^{-\left(\frac{\mathrm{t}}{\mathrm{n}}\right)^{\beta}}
$$

When $\beta<1, \lambda(t)$ decreases with time and thus it can be used to describe the first part of the bath-tub curve of failure rate (see??).

When $\beta=1, \lambda(\mathrm{t})=\mathrm{a}$ constant (λ) and the Weibull distribution reduces to the Negative Exponential with $\lambda=1 / \eta$, or $\eta=$ MTBF.

When $\beta>1, \lambda(\mathrm{t})$ increases with time and it can be used to model the wear-out phase of the bath-tub curve.

When $\beta=3.44$, the Weibull distribution approximates to the Normal distribution with

$$
\begin{aligned}
& \mu=0.9 \eta \\
\text { and } & \sigma^{2}=0.0835 \eta^{2}
\end{aligned}
$$

Weibull probability paper has been produced for plotting failure data to enable easy estimation of the parameters η and β.

9.3 Details

Figure 9: PDF, CDF, Reliability and Hazard Functions for a Weibull Distribution

PDF: $f(t)=\frac{\beta}{\eta}\left(\frac{t}{\eta}\right)^{(\beta-1)} \cdot e^{\left(-\left(\frac{t}{\eta}\right)^{\beta}\right)}$
CDF: $F(x)=1-e^{\left(-\left(\frac{t}{\eta}\right)^{\beta}\right)}$
where β is a constant known as the shape parameter, η is a constant known as the scale parameter ${ }^{\dagger}(\eta>0)$,
$x \geq 0$
mean: $\mu=\eta \cdot \Gamma\left(\frac{\beta+1}{\beta}\right) \quad$ where Γ is the Gamma Function
mode: $\eta .\left(1-\frac{1}{\beta}\right)^{\frac{1}{\beta}} \quad$ when $\beta>1$

[^1] $63.2 \%\left(1-\mathrm{e}^{-1}\right)$ of items can be expected to have failed.

0 when $\beta \leq 1$
variance: $\sigma^{2}=\eta^{2} .\left(\Gamma\left(\frac{\beta+2}{\beta}\right)-\left(\Gamma\left(\frac{\beta+1}{\beta}\right)\right)^{2}\right)$
standard deviation: σ
A location parameter (γ) may be necessary in practice; that is, $\mathrm{x}-\gamma$ may be Weibully distributed. In reliability work γ is sometimes known as the minimum life or failure-free life.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.10	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.20	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.30	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.40	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.50	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.60	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.70	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.80	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.90	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.00	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.10	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.20	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.30	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.40	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.50	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.60	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.70	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.80	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.90	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.00	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.10	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.20	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.30	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.40	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.50	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.60	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.70	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.80	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.90	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.00	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

The table provides values for the area under the PDF between 0 and x. The area between $-\infty$ and 0 is 0.5 . For negative x use symmetry.

Table 1: Areas under the standard normal distribution

$\chi_{\gamma, \mathrm{n}}^{2}$ is the value of χ^{2} with n degrees of freedom, exceeded with probability γ.

Table 2: Percentage points of the χ^{2} distribution

LEAFLET 3/0

OTHER RELEVANT LITERATURE

1. BSi Standards: BS ISO 3534-1, Statistics - Vocabulary and symbols -, BSi 1993

[^0]: * Also (more recently) known as the Gaussian or LaPlace-Gauss distribution.

[^1]: $\dagger \quad$ When t is time to failure, η is also known as the characteristic life, and measures the time by which

