
Applied R&M Manual for Defence Systems 

Part D – Supporting Theory 

 
Issue 1  Page 1 

 

 

CHAPTER 2 

 

BAYESIAN STATISTICS 
 
 

CONTENTS 
Page 

 
1 INTRODUCTION         2 

 
2 GENERAL CONCEPTS        2 

 
3 APPLICATION TO R&M        6 

 
4 CONTINUOUS PRIOR DISTRIBUTIONS     10 

 
5 APPLICATION TO SUCCESS/FAILURE TYPE TRIALS   11 

 
6 APPLICATION TO CONSTANT FAILURE RATE ESTIMATION  16 

 
7 CAUTIONARY NOTES        19 



Chapter 2 
Bayesian Statistics 

 

 
Page 2 

 

1 INTRODUCTION 
 

1.1 Data that is used in Reliability and Maintainability (R&M) analysis is usually 
observed data, and does not take into account how random variations can affect data 
collection, or indeed that information exists on what the outcome is most likely to be. 
The classical approach to R&M estimates was to generate probabilities through a 
measure of what is true, based purely on observed data. The data would then be used 
through various probability theories to predict the likelihood of an event happening or 
not (success or failure, for example). However this is rarely true to life, since any R & 
D tests prior to the trials will provide evidence as to what the outcome should be. 
Bayesian Statistics attempts to make use of this knowledge and incorporate it into the 
posterior estimates and confidence intervals after the trials have taken place. 
 

2 GENERAL CONCEPTS 
 

2.1 The real value and the observed value will never match exactly (in the real 
world), usually due to uncertainty; it could even be argued that certain probabilities 
are never exact and are simply a number generated from experiments. Naturally, this 
observed data could be incorrect, as the random nature of data collection has not been 
accounted for. This approach to generating assumptions from statistical data is 
governed primarily by fixed parameters; in other words, it is assumed that the 
probability of occurrence is not distributed randomly and is assumed to always be 
constant. However, the Bayesian approach to statistics treats these parameters as 
unobserved random variables, as opposed to values that are purely observed. These 
can be discrete (i.e. integer) or continuous (any positive value), and can vary in value 
for every single trial that is performed. Bayes Theorem is used to provide a subjective 
probability distribution for the probability that an event will occur in future trials, 
taking into account this random variation.  
 
2.2 Assume that mutually exclusive events (trials) X1, X2, …, Xn occur, such that 
X1∪  X2  …  Xn = S. This is shown graphically in Figure 1. ∪ ∪
 
 
 
 
 
 
 
 
 
 
 
 
 

 

X1 X2 X3 X4 

X5 

S 

Figure 1: X1  X2  …  Xn = S ∪ ∪ ∪
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If X1, X2, …, Xn represents a partition of the sample space S, and E S (“E is within 
the set of S”) represents an arbitrary event, as shown in Figure 2, then the theorem of 
total probability states that: 

⊂

P(E) = P(X1)P(E | X1) +  P(X2)P(E | X2) + … + P(Xn)P(E | Xn) 
 

Hence, if the data X1, X2, …, Xn are known then the probability of event E can be 
found. Whilst the probability of event E cannot be directly observed, Bayes Theorem 
can use the partitioning events to compute the conditional probabilities. Bayes 
Theorem is based upon the same conditions of partitioning and events as the theorem 
of total probability, and is useful in computing the reverse probability of the type P(Xi 
| E), for i=1,2,…,n. The reverse probability can be computed by dividing P(Xi)P(E | 
Xi) by Equation 1 above. This constitutes the basic principle of Bayes Theorem. 
 
2.3 Let us assume that a parameter exists, γ, that has an unknown value for its 
probability of occurrence (Rigdon Pg.146). For this example we shall say that γ is the 
tossing of a coin. Let us then assume that the random variables X1, X2…Xn are 
observed that are determined by the unknown parameter γ; this could be the success 
rates of individual trials, or in this case ‘heads’ and ‘tails’ results from tossing the 
coin, γ. The joint probability density function is then: 
 

f (x1, x2, … , xn | γ) 
 
2.3.1 Before observing the data x1, x2, … , xn , the probability distribution for the 
situation γ has to be pre-determined that accurately reflects what our beliefs are on γ 
actually occurring. This information can be obtained from past data and records, and 
can be continuous or discrete. This is known as a prior distribution. Denoted as p(γ), 
the prior distribution is based predominantly upon the objective or subjective views of 
the user, and depending upon the accuracy of these beliefs, will greatly determine 
what outcome is obtained by using Bayes Theorem. Hence the results that are 
obtained from Bayes Theorem must be respected in terms of the priors that are given. 
 
2.3.2 Once data x1, x2, … , xn  is collected (i.e. trials), then the posterior 
distribution can be ascertained. This is the distribution of the unknown parameter γ 

Equation 1 

 

X1 X2 X3 X4 

X5 

S 

E 

Equation 2 

Figure 2: E S ⊂
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given the observed data x1, x2, … , xn. The posterior distribution is calculated using 
Bayes Theorem and represents how the probability distribution has altered given the 
trials, taking into account the prior distributions. It could be said that these trials are 
attempting to ‘push’ the level of success higher (or indeed lower) in the posterior 
distribution, hence strengthening the belief of a success and thus a hypothesis. The 
example towards the end of this subsection will clarify the above. 

2.4 Engineers often make decisions regarding probabilities using limited 
information. This takes the form of objectivity (i.e. observed data from experimental 
‘trials’) or subjectivity (i.e. personal experience or opinion). The majority of decisions 
encapsulating prior probabilities constitute both objective and subjective information, 
even though the posterior probability in practical terms cannot be determined. 
Understanding this phenomenon is critical in appreciating Bayes Theorem. A 
posterior can be calculated using objective and subjective prior probabilities on the 
partitioning events and conditional probabilities, even though the posterior cannot be 
practically determined. The application of Bayes Theorem thus serves to determine 
this posterior probability from the priors, and in this way hypotheses can be created. 
However, it is critical to realise that Bayes Theorem is totally dependent upon the 
prior probability distribution that is supplied; naturally, as this is not an exact value 
(as stated earlier), the outcome through Bayes for future likelihoods is totally 
dependent upon these priors, and so the results must be viewed with caution. An over-
confident prior probability distribution could give a future “success” probability that 
is in excess of what it actually should be, and vice versa. The belief that the posterior 
probability distribution is correct should always be treated with caution. Good 
examples of such are lawyers in court, who, through supplying inaccurate prior 
information, are able to ‘deduce’ the outcome that they want, and one that is not 
necessarily the actual answer.  
  
2.5 In Figure 2, the sample space S is partitioned into the mutually exclusive 
events X1, X2, …, Xn  such that X1∪  X2 ∪  …  Xn = S. If this is the case then: ∪
 

E = (E∩X1) ∪ (E∩X2) ∪ (E∩X3) …… (E∪ ∪ ∩Xn) 
    
Using the addition rule it is seen that: 
 

P(E) = (E∩X1) + (E∩X2) + (E∩X3) +……+ (E∩Xn) 
 
And using the multiplication rule: 
 

P(E∩Xi) = P(Xi)P(E | Xi)  for i=1,2,3,…..,n    
 
Substituting Equations 5 and 4 reveals the ‘total probability’: 
 

P(E) = P(Xi)P(E |  Xi) ∑
=

n

i 1

 
Equation 6 is the total probability rule for finding P(E) in terms of the probabilities of 
mutually exclusive events Xi to Xn and the corresponding conditional probabilities. 
This can be shown as a tree diagram, Figure 3. It is assumed that Xn in Figure 3 is 

Equation 3

Equation 4

Equation 5

Equation 6
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represented by the three mutually exclusive events X1, X2, X3, and that E' stands for “E 
not occurring”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The expression “P(E |  X1)” is read as “the probability that E will happen, given that 
X1 has already happened). 
 
2.6 It has been shown how to compute P(E |  Xi), but not P(Xi | E ). In other words, 
how can we find out what the probability is of Xi happening given that E happened (or 
indeed E' )? As stated earlier, to work out the reverse probabilities requires the use of 
Bayes Theorem, which is now derived as follows: 
 

P(E∩Xi) = P(Xi)P(E | Xi) = P(E)P(Xi | E) 
 
And so if we imagine Xr is a specific event of one the events Xi, then rearrangement of 
Equations 6 and 7 reveals:  
 
 

P(Xr | E) = 
∑
=

n

i 1

)  | )P(P( 

 ) | )P(P(

ii XEX

XEX rr  for r=1,2,3,…..,n 

 
 

    =
)P(

 ) | )P(P(
E

XEX rr   “BAYES THEOREM” 

 
Hence, by calculating the probability of P(E | Xr) from the tree diagram and using the 
processes mentioned earlier, we have been able to calculate the reverse probability 
using Equation 8. This is Bayes Theorem. P(E) is simply the total probability that can 
be calculated from the tree diagram.  
 

X1 

X2 

X3 

E 

E 

E 

E' 

E' 

E' 

P(E∩ X1) = P(X1)P(E | X1) 

P(E∩ X2) = P(X2)P(E | X2) 

P(E∩ X3) = P(X3)P(E | X3) 

  
P(E'∩ X1) = P(X1)P(E' | X1) 

P(E'∩ X2) = P(X2)P(E' | X2) 

P(E'∩ X3) = P(X3)P(E' | X3) 

P(E |  X 2  )

P(E |  X 1  )

P(E |  X 3  )

Equation 7

Equation 8

Figure 3: Tree diagram representing Equation 6 for X1, X2, X3 
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2.7 It is also worth noting that Equation 8 gives rise to further formulae: 
 

P(Xr) = P(Xr | E). P(E) + P(Xr | E'). P(E') 
 

P(E) = P(E | Xr). P(Xr) + P(E | Xr'). P(Xr') 

3 APPLICATION TO R & M 
 
3.1 In classical statistics, parameter estimation and confidence interval 
calculations (see Part D Chapter 7) are conducted on the basis that, prior to the sample 
measurements, nothing whatever is known about the outcome.  In practice this is 
rarely true.  For example, in demonstration trials, if a comprehensive Reliability 
programme has been conducted during the R & D phase, one probably has some idea 
of the likely outcome of the trials.   
 
3.1.1 Bayesian statistics has great intuitive appeal, especially to the engineer.  It 
seems on the face of it absurd to ignore the fact that one has prior knowledge from R 
& D testing when conducting demonstration trials.  One might, for example, feel 95% 
sure that a new missile will enter its demonstration or evaluation trials with a 
reliability (probability of individual firing success) greater than 60%.  Therefore, why 
not use this knowledge to improve the estimate of Reliability from the trials and 
narrow the confidence intervals that would be obtained by classical methods? 
 
3.1.2 Using prior information can enable demonstration tests to a specified level of 
confidence to be shorter than would otherwise be necessary (assuming that the item 
being assessed actually has a reliability which exceeds the target), thus saving time 
and money. 
 
3.1.3 Bayesian statistics is equally applicable to Maintainability estimates; the 
principle of using prior information to obtain a posterior estimate can be used to 
calculate preventive maintenance schedules, for example. The theory in this chapter is 
such that Bayesian statistics can be used in a whole array of R&M functions that 
involve prior information. Obtaining posterior probabilities on equipments’ reliability 
is necessary for effective R&M in every way. Since R&M govern when an item will 
be ready for service, Bayesian statistics are also effective in Availability estimates. 
Example 1 below concerns diagnostics, which itself is an important R&M function. 
 
3.2 Example 1: Equipment is in service and has integral Built In Test 
Equipment (BITE) diagnostics. The BITE is 90% effective at diagnosing a system fault 
correctly, displaying the message “FAULT” when this is so. However, the BITE 
contains a false error indication rate of 5%; that is, there is a 0.05 probability that 
equipment is diagnosed as faulty, given that it is actually healthy. At any point during 
a mission, past data and records have shown that there is an 8% chance that the 
equipment will actually be faulty. 
 

a) What is the probability that equipment selected at random will read 
“FAULT” in the BITE system? 

 

Equation 9

Equation 10
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b) If the equipment is diagnosed with the “FAULT” message, what is the 
probability that the equipment will actually be faulty? 

 
3.2.1 General: Whilst a) and b) look very similar situations, there is a 
significant difference in their wording that greatly alters how the calculations should 
proceed. A tree diagram provides a diagrammatic version of the problem:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F = Faulty equipment and B = BITE reading “FAULT”. Hence F' = Non-faulty 
equipment and B' = BITE not reading “FAULT”. 
 
Thus, from the given information: P(F) = 0.08 P(B|F) = 0.9 P(B|F ') = 0.05  
and this is shown in Figure 4. 
 
 
3.2.2 Solution a) If we consider the above tree diagram, situation a) is not 
dependent upon other information; it is simply a case of adding up the values on the 
arms on the tree diagram for “FAULT” by multiplication. In this way, it is worth 
placing the value of P(F) on that arm, and thus P(F'), (1-0.08 = 0.92). 
 
The same can then be applied for the arms of B and B'. 
 
From here, the same process as used to formulate Equation 6 can be used; that is, to 
calculate the total probability for P(B) it is required to multiply the branches of the 
tree for B. Thus the working is: 
 

P(F)P(B|F) = 0.08 x 0.9 = 0.072 
 

P(F ')P(B|F ') = 0.92 x 0.05 = 0.046 
 

And thus P(B) = 0.072 + 0.046 = 0.118 
 

F 

F ' 

B ' 

B 

B ' 

B 

0.08 

0.9 

0.05 

Figure 4: Tree diagram for Example 1 
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Therefore, there is an 11.8% chance that a system selected at random will read 
“FAULT” in the BITE, regardless of whether or not the equipment is faulty. 
 
3.2.3 Solution b) It is required to find the posterior probability (actually a fault), 
given that something has happened prior to it (“FAULT” message), denoted as 
P(F|B).  
 
It was calculated that the probability of a “FAULT” message displayed, P(B), is 
0.118. Using this information, Bayes Theory can be used to calculate P(F|B), seeing 
as the value of P(B|F) is already known. Likewise, this equation can always be 
rearranged to ascertain the required information. Notice how the process used in part 
a) cannot be used in part b), since “F” comes before “B” in the tree diagram. It is not 
possible to read P(F|B) directly off the tree as it requires the reverse probability of 
P(B|F), which demands Bayes Theory. 
 
Substituting the calculated values into Equation 8, and using equations 9 and 10 to say 
that P(B) = : 
 

P(Xr | E) = 
)P(

 ) | )P(P(
E

XEX rr  

 
 

→       | FP( )B
)P(

)|)P(P(
B

FBF
=  

 

  = 
0.118
0.072   

 
  = 0.61 

 
Thus, there is a 61% chance that if the BITE displays “FAULT”, the system will 
actually be faulty. This answer is, of course, totally dependent upon what prior 
information is used.  
 
3.2.4 Example 1 was a simple walk-through of how a single prior reliability can be 
used to work out the posterior estimate. Yet what if there is more than one probability 
for the prior? Let us consider the following example, which covers aspects of R&M.  

3.3 Example 2: Past experience has shown that turbine blades, over a given 
period of service, are supplied in batches that are either of high reliability (0.99) or 
low reliability (0.9).  A batch is received, a sample of 10 blades is tested under in-
service conditions, and one fails.  What is the probability that this is a high reliability 
batch, if it is known that these account for 25% of the total? 
 
3.3.1 Solution: In this case, the prior information is that 25% of batches have 
99% reliability and 75% have 90% reliability.  
 
Let event ‘A’ be the occurrence of a high reliability batch. 
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Let event ‘B’ be the test result ‘one failure in ten’. 
 
Then the answer to the problem is P(A|B). 
 
3.3.2 To compute this using Bayes Theorem (Equation 8), P(A), P(B) and P(B|A) 
must be calculated. 
 

P(A) = 0.25 
 
P(B|A)  = probability of getting 1 defective item in a sample of 10 
items taken from a batch with reliability 0.99 

 
This probability may be obtained from the Binomial Distribution (Part D Chapter 3) 
as: 
 
10C10.999 x 0.01 = 0.0914 
 
and thus:    
 

P(B|A)  =  0.0914 

3.3.3 The evaluation of P(B) is less straightforward, and use must be made of 
Equation 10. Replacing Xr and E with A and B respectively from Equation 10: 
 

P(A) = 0.25 
 

P(A') = 0.75 
 

P(B|A) = 0.0914  (from above) 
 

  P(B|A') = probability of getting one failure in a sample of ten 
taken from a low reliability batch (since “A” is “not a high reliability 
batch”; that is, A is “a low reliability batch”). 

 
Using the Binomial Distribution again yields: 
 
  P(B|A') = 10C10.099 x 0.1 = 0.3874 
 
∴   P(B) = 0.0914 x 0.25 + 0.3874 x 0.75 (from Equation 10) 
 
   = 0.3134 
 
3.3.4 It is now possible to evaluate Equation 8 since all the probabilities are known. 
 

∴  P(A|B) = 
3134.0

25.00914.0 ×    = 0.073 
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3.3.5 Thus the probability that the batch was a high reliability one is 0.073. 

4 CONTINUOUS PRIOR DISTRIBUTIONS 
 
4.1 In Example 2 the ‘prior’ consisted of two batch reliabilities, with known 
probabilities of occurrence.  One could easily conceive of priors with 3 possibilities 
for the same example, e.g. batches with reliabilities of .9, .95 and .99, with known 
probabilities of occurrence 0.1, 0.4 and 0.5 say.  In general, there could be n 
possibilities.  If n becomes very large, one can conceive of a prior which is, to all 
intents and purposes, a continuous function.  Similarly, the two state posterior 
probability function (given in the last sentence of Example 2) can be generalised to a 
continuous posterior function when the prior is continuous. 
 
4.1.1 These continuous functions are in fact Probability Density Functions (PDF), 
which can be expressed as f(p).  In the notation of the example, there is now a PDF in 
which a batch may have any reliability between 0 and 1, and where the probability 
that the batch reliability lies between p and pδ p is f(p)δ p.  The process embodied in 
Bayes Theorem (Equation 8) therefore is: 

 
Page 10 

 
 

Prior Distribution f 0 (P) 

 
 
 
 
 
 
 

1 
Probability of Success (P)  

 
 
 

TEST RESULTS  
 
 
 
 

Posterior Distribution 

 
 

f 1 (P)  
 
 
 
 1
 

Probability of Success (P) 
 

Figure 5: Bayesian Method  
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4.2 So far this section has outlined the principle of Bayesian statistics and its 
application in R&M. No attempt has been made here to introduce the subject in a 
rigorous mathematical fashion.  The basic concepts have been described as simply as 
possible.  
 
4.2.1 Particular techniques are applied to Reliability and failure rate assessment in 
the following sections, with illustrative examples embedded.  

5 APPLICATION TO SUCCESS/FAILURE TYPE TRIALS 
 
5.1 The method of analysis will first be illustrated by means of a simple example, 
and then generalised by induction. 

5.2 Analysis Based on a Single Test Result 
 
5.2.1 Suppose the prior distribution for probability of success is f(p)0.  What is the 
posterior distribution, f1(p), for probability of success given that 1 trial was conducted 
and the item operated successfully? 
 
5.2.2 Let event A be ‘the true value of probability of success lies between p and 
p+δ p’, (δ p very small).  Let event B be ‘the single trial is successful’. 
 
Then   P(A|B) = f1(p) δ p (this is the definition of f1(p)) 
  P(B|A) = p 
  P(A) = f0(p) δ p 
  P(B) = Expected value of p from the prior distribution, i.e. 

pf0 (p)dp (see Part D Chapter 3) ∫
1

0

 
5.2.3 Thus from Equation 8: 

  f1(p) = 
 )p(pf 

 (p)pf
1

0
0

0

∫ dp
 

 
5.2.4 To proceed further it is necessary to assume a distribution for f0(p).  For 
reasons that will become clear in what follows, the Beta distribution is chosen.  The 
Beta distribution is defined by two parameters, V and W, and its PDF (f(p)) is: 
 

f(p) = 
)()(
)(

WV
WV

ΓΓ
+Γ pV-1(1-p)W-1 where Γ (X) = Gamma function 

 
In this application V and W are usually integers, and since Γ (X) = (X-1)! for X 
integer: 
 

f(p) = 
)!1()!1(

)!1(
−−

−+
WV

WV pV-1(1-p)W-1 

Equation 11 

Equation 12 



Chapter 2 
Bayesian Statistics 

 

 
Page 12 

Also, the mean of a Beta distribution, which is the denominator of Equation 11, is 
V/(V+W). 

 
5.2.5 Substituting these expressions in Equation 11 yields: 
 

  f1(p) = p
)!1()!1(

)!1(
−−

−+
WV

WV pV-1(1-p)W-1

V
WV )( +  

 
 

∴  f1(p) = { }
{ } )!1(!1)1(

!1)1(
−−+

−++
WV

WV p(V+1)-1(1-p)W-1 

 
 
That is, if f0(p) is a Beta distribution with parameters V and W, f1(p) is also a Beta 
distribution, in which the V value of the prior has increased by 1. 
 
5.2.6 Had the test result in paragraph 5.2.1 been a failure, a similar argument would 
have resulted in f1(p) being a Beta distribution in which W was increased by 1. 

5.3 Generalisation to S Successes in S+F Trials 
 
5.3.1 The foregoing can be extended to the general case by induction.  If one thinks 
of the S+F trials occurring sequentially, then the posterior Beta distribution of the ith 
trial can be thought of as the prior distribution for the i+1th trial.  Since at each trial 
either V or W is increased by 1 depending on whether the result was a success or 
failure respectively, at the end of S+F trials we will have a posterior distribution 
where: 

V  V+S ⇒
W  W+F ⇒

 
where V and W were the parameters of the prior. 
 
5.3.2 It is the fact that this very simple modification to the prior, by the test results, 
yields the posterior distribution, which commends the Beta distribution in this 
application. 
 
5.3.3 The expected or mean value of the posterior distribution is the reliability 
estimate after the trials, i.e.: 
 

FSWV
SV
+++

+  

 
The posterior unreliability estimate is therefore: 
 

FSWV
FW
+++

+  

 
 

Equation 13



Applied R&M Manual for Defence Systems 

Part D – Supporting Theory 

 
Issue 1  Page 13 

5.4 Quantifying the Prior 
 
5.4.1 It is a common misapprehension that, since one adds successes to V and 
failures to W, V and W could be thought of as the successes and failures of a 
‘notional’ prior trial.  In fact, this is not the case, although it is approximately true for 
large V and W.  The reason is that the Beta distribution is of interest, not the Binomial 
distribution.  For low values of V and W the distributions differ quite considerably, as 
can be seen in Figure 6. 
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5.4.2 The easiest way to recognise that V and W should not strictly be thought of as 
the results of a ‘notional’ prior trial is to observe that V = 1, W = 1 give the uniform 
distribution; that is, all values of p between 0 and 1 are equally likely.  This would 
clearly not be the ‘classical’ or intuitive conclusion drawn from two trials, one of 
which failed.  In fact, the prior V = 1, W = 1 is of special interest because it is the 
uniform prior.  It can be considered to represent ‘prior ignorance’.  The posterior 
estimate of reliability (R) with this prior is: 

Figure 6: PDF of Beta Distribution for various values of V and W 
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R = 
2

1
++

+
FS

S  (from Equation 13) 

 
This compares with the ‘classical’ estimate of R: 
 

  R = 
FS

S
+

 

 
‘Bayesians’ tend to use the former expression for R when they have no strong prior 
information.  Apart from philosophical considerations, it is claimed to be intuitively 
more reasonable, since estimates of R which are 0 or 1 are avoided. 
 
5.4.3 The choice of prior in other situations involves looking at tables of the Beta 
distribution to obtain values for V and W which roughly meet the requirement.  It 
should be noted that a one-sided prior, such as ‘the probability that the reliability 
exceeds 60% is 0.90’, is not strictly sufficient, since this condition could be met by 
either a weak or strong prior, as in Figure 7.  (Each area to the left of the black line = 
10% of PDF area.)  When a one-sided prior is unavoidable, choose the smallest value 
of V to meet the condition as this will result in the weakest prior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to assist in quantifying the prior, tables of the Beta distribution are included 
in Part D Chapter 3∗. Their use is illustrated by means of the following, Example 3. 
 
 
5.5 Example 3: On the basis of past experience there is estimated to be a 
probability of 0.9 that the reliability (R) of a hose seal lies between 0.6 and 0.9.  (This 
may be interpreted as a 5% chance that R<0.6 and a 5% chance that R>0.9.)  In a 
                                                 
∗ To be included in a future amendment. 

0.6 1 
Reliability, p 

f(p) 

Strong Prior 

Weak Prior 

Figure 7: Possible Prior Distribution 
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demonstration trial 15 seals are tested and 7 fail.  What is the estimated reliability of 
the seal and the 80% CI? 
 
5.5.1 Solution: The prior is expressed in terms of a 90% confidence statement, 
therefore to obtain the appropriate prior Beta Distribution, examine the Beta table  
(Part D Chapter 3, Table…)∗ for the lower 5% points (each ’tail’ = 5%). 
 
Firstly, look in the table to identify the values of V and W which will give a lower 
limit of ~0.6. These run diagonally down the table, taking in such values as V = 6, W 
= 1; V = 9, W = 2; etc. 
 
Now identify values of V and W which will give a 5% upper tail above 0.9.  To do 
this make use of the fact that the Beta distribution reflects about the line p = 0.5 when 
V and W are reversed.  Thus, to identify such values of V and W, look in the table for 
values of 1-0.9 (=0.1), but reverse the V and W notation in the table.  Again, this 
provides a ‘line’ across the table taking in such values (before V, W reversal) as V = 
2, W = 3; V = 3, W = 6; etc.  It then remains to match these two sets of pairs as 
closely as possible to obtain the V0 and W0 values for the prior. 
 
In this case reasonable values are  V0 = 15, W0  = 5, since this gives a 5% tails to the 
Beta distribution at p = 0.58 and p = 0.58 and p = 0.11 (=1-0.89). 
 
In this example, S = 8, F = 7; therefore, from equation (9), the posterior reliability 
estimate is: 
 

R = 
87155

815
+++

+  =  0.657 

 
To obtain the 80% CI look at the Table of lower 10% points for the Beta distribution 
(Part D Chapter 3, Table…)∗, with V1 = V0+S, W1 = W0+F (i.e. V1 + 23, W1 = 12) 
and also with V1 = 12, W1 = 23; this giving the lower, and 1 minus the upper, 
confidence limits respectively on reliability.  Where necessary, interpolation must be 
used. 
 
The 80% CI obtained from Table… is: 
 
 0.552 to 1-0.240 on the reliability; 
 
that is: 0.552 to 0.760, about the reliability estimate of 0.657. 
 
This compares with the classical 80% CI from Binomial Tables for 8 successes in 15 
trials of 0.34 to 0.72, with a reliability estimate of 8/15 = 0.533. 
 
5.5.2 The way in which demonstration trials can be shortened is observed by noting 
in the above example that using the Bayesian CI it can be said that there is a 
probability of 0.9 that the reliability exceeds 55.2%.  With the classical approach it 

                                                 
∗ To be included in a future amendment. 
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can only be said that the lower one-sided 90% confidence limit is 34%.  In effect, the 
prior has raised the lower confidence limit by about 20%. 
 
 

6 APPLICATION TO CONSTANT FAILURE RATE 
ESTIMATION 

6.1 General Theory 
 
6.1.1 An approach similar to section 5 can be adopted here, except that instead of 
using the Beta distribution the Gamma distribution is used. 
 
6.1.2 The Gamma distribution is defined as: 
 

PDF (f(λ )) = 
)(

)exp(
1

cb
bb

c

Γ

⎥⎦
⎤

⎢⎣
⎡ −⎥⎦

⎤
⎢⎣
⎡

− λλ

 

 
The parameters defining the distribution are b and c.  For the Gamma distribution: 
 

Mean  =  bc 
 

       Variance = b2c 
 

In this application it is simpler to constrain c to be an integer ≥ 1. 
 
6.1.3 It is not proposed to derive here the relationship between the posterior and 
prior distributions.  Suffice it to say that, if the prior Gamma distribution has 
parameters b0 and c0, and in a trial f failures are observed in time t, then application of 
Bayes theorem results in a posterior Gamma distribution with parameters b1 and c1, 
where: 
 

1

1
b

  =  t
b

+
0

1  

 
c1 = c0 + f 
 

6.1.4 Thus, the posterior estimate of failure rate is: 
 

b1c1 

 
and the CI about this estimate must be obtained using the properties of the Gamma 
distribution.  Tables of the Gamma distribution are rarely provided, because it is 
closely related to the  distribution, and can be obtained from  tables.  Denoting 
the Gamma distribution by , the relationship is: 

2χ 2χ
Γ

 

Equation 14

Equation 15

Equation 16

Equation 17

Equation 18
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     =  cb,:Γ 2
2.

2 c
b χ  

 
The use of Equation 19, and the whole Bayesian approach to failure rate estimation, is 
illustrated in Example 4. 
 
6.1.5 As in section 5, the quantification of the prior is the crucial factor in the 
process.  One approach is to formulate it as: ‘The mean of the prior is 0  (prior failure 
rate estimate), with a standard error of σ ’.  The advantage of this is that equations 15 
and 16 can then be used to obtain b0 and c0 as follows: 
 

   00cb=θ  
 

0
2
0

2 cb=σ  
 

   ∴  
θ
σ 2

0 =b  

 

    2

2

0 σ
θ

=c  

 
 
6.1.6 It is interesting to note that failure rate estimation, using Bayesian statistics, 
illustrates a fundamental difficulty in the subject, namely quantifying prior ignorance.  
It was coped with in section 5 by having a uniform prior, but this is not possible here, 
since failure rate has an infinite range (0 to ∞ ).  In practice, an ‘improper’ uniform 
prior distribution is often used for λ , where b0 =  ∞  and c0 = 1. 
 
6.2 Example 4: From R & D experience it is estimated that the failure rate of 
light bulbs is 0.025 failures/hour, with a standard error of 0.01.  The bulbs undergo a 
demonstration trial in which 5 failures occur in 500 hours of testing.  What is the 
posterior estimate of failure rate, and the 90% CI? 
 
6.2.1 Solution: In the notation of paragraph 6.1.5: 
 

0  = 0.025 
 

σ  = 0.01 
 
From equations 20 and 21: 
 

b0 = 0.004 
 

c0 = 6  (to the nearest integer) 
 
In the notation of equations 17 and 18: 
 

Equation 19

Equation 20

Equation 21
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t = 500 
 

f = 5 
 

∴ 
1

1
b

 = 
004.0
1 + 500 

 

∴ b1 = 
750
1 =  0.0013 

c1 = 6 + 5 = 11 
 
 
Therefore the posterior failure rate estimate is: 
 

b1c1 = 
750
11 =  0.0147 

 
To obtain the 90% CI, use Equation 19.  The CI is: 
 

Lower limit:  2
2%,95

1
12 c

b
χ  

 

Upper limit:  2
2%,5 12

1
c

b χ  

 
since the two ‘tails’ of the PDF are each 5%. 
 
This yields: 

Lower limit:  0221.09.33
2

0013.0
=⎥⎦

⎤
⎢⎣
⎡  

 

Upper limit:  0080.03.12
2

0013.0
=⎥⎦

⎤
⎢⎣
⎡  

 
 
This compares with the ‘classical’ estimates of: 
 

λ  = 5/500 =  0.01 
 
90% CI (see Part D Chapter 7): 
 

Lower limit:  0.0227 
 

Upper limit:  0.00392 
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7 CAUTIONARY NOTES 
 
 
7.1 Bayesian Statistics has been and continues to be the subject of controversy. 
This chapter has indicated some of the reasons underlying this and is included, not 
necessarily to endorse its use, but to acknowledge the fact that it is currently used, and 
that the pressures inherent in development and demonstration programmes encourage 
its use.  However, it must be recognised that, in the wrong hands, these statistical 
techniques can produce misleading results, and that some eminent statisticians have 
strongly deprecated their use for Defence Equipment.  It is imperative that prior 
knowledge be assessed with complete honesty and placed formally on record before 
the trials take place.  The technique should not be used without the advice of a 
competent statistician. 
 
7.2 It is difficult to transform an intuitive subjective assessment of prior 
information into the parameters of a prior statistical distribution.  In practice, the type 
of prior distribution is chosen on the grounds of its mathematical convenience, rather 
than because the prior knowledge is actually of that form. 
 
7.3 There is a strong possibility that wishful thinking will colour the expression of 
the prior knowledge, particularly if the reliability development programme leaves 
something to be desired, and/or there are several as yet untested modifications in the 
items about to undergo trials.  If a ‘prior’ is chosen which indicates a strong degree of 
belief, then the prior will dominate the test results for some time into the trial.  If the 
prior happens to be optimistic (as is the tendency) the consequences could be serious.  
For example, a few early successes could be sufficient, with a strong prior, to provide 
a ‘demonstration’ to the required confidence level, even when the true reliability is 
below target. 
 
7.4 Further problems, partly of an ethical nature, arise when one is faced with test 
results that clearly conflict with the chosen prior, because priors once chosen should 
be unalterable.  Also, if the prior has not previously been placed on record, the 
temptation must exist for the unscrupulous, when writing up the test report, to post a 
prior after the trials, which produces the overall required demonstration. 
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